

Job No: 8599/27 Our Ref: 8599/27-AA 20 September 2019

Daracon Contractors Pty Ltd 184 Adderley Street AUBURN NSW 2144 Email: SimpsonW@daracon.com.au

Attention: Mr S Wong / Mr J Letby

Dear Sirs

re: Newpark - Precinct 6, Marsden Park
Elara Blvd, Marsden Park
Post Earthworks Salinity Assessment - Exposure Classification

At your request, Geotech Testing Pty Ltd conducted a salinity assessment at the above site after completion of earthworks. This report provides exposure classification of a number of residential lots (newly developed) at the above-mentioned residential subdivision. The work was commissioned by Mr J Letby of Daracon Contractors Pty Ltd and was conducted as per our fee proposal (Our Ref: ER.sf/Q1379) dated 31 October 2018.

Field Work

The field work for this investigation was carried out between 4th and 9th of August 2019 under the full time supervision of a Geotechnical Engineer from this company and consisted of the following:

- Carry out a walk over survey to assess existing geological and geotechnical conditions within and in the vicinity of the site.
- Excavate 125 test pits to depths up to 1.5m using a small 5 tonne excavator. Test pits were excavated along the boundary lines between lots and their locations are shown on the attached Drawing No 8599/28-AA1.
- Recovery of the representative soil samples from test pits for laboratory testing.

The field work was supervised by a Geotechnical Engineer from this company, who was responsible for nominating test pit locations, recovering samples and preparation of field logs.

Site Conditions

The site is connected to Elara Blvd to the north and is bounded by newly developed subdivision land on all sides. The site was originally farmland with scattered trees, which have been removed. Topography of the site generally slopes to south-west. At the time of investigation, earthworks for the lots had been completed, and topsoil spreading on some of the lots was underway. The site was devoid of any vegetation.

34 Borec Road, Penrith NSW 2750 Telephone: (02) 4722 2744

8599/28-AA

Newpark Precinct 6 – Elara Blvd, Marsden Park

Sub-surface Conditions

Sub-surface conditions encountered at the site are detailed in the attached Table A and summarised below in Table 1.

Table 1: Sub-surface Conditions

Test Pit	Termination Depth (m)	Topsoil (m)	Fill (m)	Natural (m)	Bedrock (m)
TP1	1.5	0.0-0.2	0.2-0.4	0.4-1.5	NE
TP2	1.5	0.0-0.2	0.2-0.3	0.3-1.5	NE
TP3	1.5	0.0-0.2	0.2-0.4	0.4-1.5	NE
TP4	1.5	0.0-0.2	NE	0.2-1.5	NE
TP5	1.5	0.0-0.2	0.2-1.5	NE	NE
TP6	1.5	0.0-0.2	0.2-1.5	NE	NE
TP7	1.5	0.0-0.2	NE	0.2-1.5	NE
TP8	1.5	0.0-0.2	0.2-1.5	NE	NE
TP9	1.5	0.0-0.2	0.2-0.3	0.3-1.5	NE
TP10	1.5	0.2-0.2	0.2-0.3	0.3-1.5	NE
TP11	1.5	0.0-0.2	0.2-0.4	0.4-1.5	NE
TP12	1.5	0.0-0.2	0.2-0.9	0.9-1.5	NE
TP13	1.5	0.0-0.2	NE	0.2-1.5	NE
TP14	1.5	0.0-0.2	NE	0.2-1.5	NE
TP15	1.5	0.0-0.2	NE	0.2-1.5	NE
TP16	1.5	0.0-0.2	0.2-0.4	0.4-1.5	NE
TP17	1.5	0.0-0.2	0.2-0.7	0.7-1.5	NE
TP18	1.5	0.0-0.2	0.2-0.4	0.4-1.5	NE
TP19	1.5	NE	NE	0.0-1.5	NE
TP20	1.5	0.0-0.2	NE	0.2-1.5	NE
TP21	1.5	NE	NE	0.0-1.5	NE
TP22	1.5	0.0-0.2	NE	0.2-1.5	NE
TP23	1.5	NE	0.0-0.5	0.5-1.5	NE
TP24	1.5	0.0-0.2	0.2-0.6	0.6-1.5	NE
TP25	1.5	0.0-0.2	0.2-0.5	0.5-1.5	NE
TP26	1.5	0.0-0.2	NE	0.2-1.5	NE
TP27	1.5	0.0-0.2	0.2-0.3	0.3-1.5	NE
TP28	1.5	0.0-0.2	NE	0.2-1.5	NE
TP29	1.5	0.0-0.2	0.2-0.3	0.3-1.5	NE
TP30	1.5	0.0-0.2	NE	0.2-1.5	NE
TP31	1.5	0.0-0.2	0.2-0.4	0.4-1.5	NE
TP32	1.5	0.0-0.2	NE	0.2-1.5	NE
TP33	1.5	0.0-0.2	NE	0.2-1.5	NE
TP34	1.5	0.0-0.2	0.2-0.5	0.5-1.5	NE
TP35	1.5	0.0-0.2	0.2-1.2	1.2-1.5	NE

8599/28-AA Newpark Precinct 6 – Elara Blvd, Marsden Park

Test Pit	Termination Depth (m)	Topsoil (m)	Fill (m)	Natural (m)	Bedrock (m)
TP36	1.5	0.0-0.2	0.2-0.7	0.7-1.5	NE
TP37	1.5	0.0-0.2	0.2-1.3	1.3-1.5	NE
TP38	1.5	0.0-0.1	0.1-1.2	1.2-1.5	NE
TP39	1.5	NE	0.0-0.7	0.7-1.5	NE
TP40	1.5	0.0-0.2	0.2-0.9	0.9-1.5	NE
TP41	1.5	NE	0.0-0.2	0.2-1.5	NE
TP42	1.5	NE	0.0-0.9	0.9-1.5	NE
TP43	1.5	NE	0.0-1.1	1.1-1.5	NE
TP44	1.5	NE	0.0-0.9	0.9-1.5	NE
TP45	1.5	NE	0.0-0.8	0.8-1.5	NE
TP46	1.5	NE	0.0-1.2	1.2-1.5	NE
TP47	1.5	NE	0.0-0.9	0.9-1.5	NE
TP48	1.5	NE	0.0-0.8	0.8-1.5	NE
TP49	1.5	NE	0.0-0.8	0.8-1.5	NE
TP50	1.5	NE	0.0-0.9	0.9-1.5	NE
TP51	1.5	NE	0.0-0.6	0.6-1.5	NE
TP52	1.5	NE	0.0-0.8	0.8-1.5	NE
TP53	1.5	NE	0.0-0.8	0.8-1.5	NE
TP54	1.5	NE	0.0-0.1	0.1-1.5	NE
TP55	1.5	NE	0.0-0.1	0.1-1.5	NE
TP56	1.5	NE	0.0-0.1	0.1-1.5	NE
TP57	1.5	NE	0.0-0.2	0.2-1.5	NE
TP58	1.5	NE	0.0-0.2	0.2-1.5	NE
TP59	1.5	NE	0.0-0.2	0.2-1.5	NE
TP60	1.5	NE	0.0-0.2	0.2-1.5	NE
TP61	1.5	NE	0.0-0.2	0.2-1.5	NE
TP62	1.5	NE	0.0-0.2	0.2-1.5	NE
TP63	1.5	NE	0.0-0.2	0.2-1.5	NE
TP64	1.5	NE	0.0-0.8	0.8-1.5	NE
TP65	1.5	NE	0.0-0.2	0.2-1.5	NE
TP66	1.5	NE	0.0-0.2	0.2-1.5	NE
TP67	1.5	NE	0.0-0.2	0.2-1.5	NE
TP68	1.5	NE	0.0-0.3	0.3-1.5	NE
TP69	1.5	NE	0.0-0.3	0.3-1.5	NE
TP70	1.5	NE	0.0-0.2	0.2-1.5	NE
TP71	1.5	NE	0.0-0.3	0.3-1.5	NE
TP72	1.5	NE	0.0-0.2	0.2-1.5	NE
TP73	1.5	NE	0.0-0.3	0.3-1.5	NE
TP74	1.5	NE	0.0-0.3	0.3-1.5	NE

8599/28-AA Newpark Precinct 6 – Elara Blvd, Marsden Park

Test Pit	Termination Depth (m)	Topsoil (m)	Fill (m)	Natural (m)	Bedrock (m)
TP75	1.5	NE	0.0-0.3	0.3-1.5	NE
TP76	1.5	NE	0.0-0.3	0.3-1.5	NE
TP77	1.5	NE	0.0-0.3	0.3-1.5	NE
TP78	1.5	NE	0.0-0.3	0.3-1.5	NE
TP79	1.5	NE	0.0-0.3	0.3-1.5	NE
TP80	1.5	NE	0.0-0.6	0.6-1.5	NE
TP81	1.5	NE	0.0-0.5	0.5-1.5	NE
TP82	1.5	NE	0.0-0.6	0.6-1.5	NE
TP83	1.5	NE	0.0-0.6	0.6-1.5	NE
TP84	1.5	NE	0.0-0.3	0.3-1.5	NE
TP85	1.5	NE	0.0-0.5	0.5-1.5	NE
TP86	0.4	0.0-0.3	NE	NE	0.3-0.4
TP87	0.4	0.0-0.3	NE	NE	0.3-0.4
TP88	0.4	0.0-0.3	NE	NE	0.3-0.4
TP89	1.5	NE	0.0-0.3	0.3-1.5	NE
TP90	1.5	NE	0.0-0.3	0.3-1.5	NE
TP91	0.4	NE	0.0-0.3	NE	0.3-0.4
TP92	1.5	NE	0.0-0.3	0.3-1.5	NE
TP93	1.5	0.0-0.3	NE	0.3-1.5	NE
TP94	0.4	0.0-0.3	NE	NE	0.3-0.4
TP95	1.5	NE	0.0-1.5	NE	NE
TP96	1.5	NE	0.0-1.5	NE	NE
TP97	1.5	NE	0.0-1.2	1.2-1.5	NE
TP98	1.5	NE	0.0-1.2	1.2-1.5	NE
TP99	1.5	NE	0.0-1.5	NE	NE
TP100	1.5	NE	0.0-1.2	1.2-1.5	NE
TP101	1.5	0.2-0.3	0.3-0.7	0.7-1.5	NE
TP102	1.5	NE	0.0-0.5	0.5-1.5	NE
TP103	1.5	NE	0.0-0.3	0.3-1.5	NE
TP104	1.5	NE	0.0-0.3	0.3-1.5	NE
TP105	1.5	NE	0.0-0.3	0.3-1.5	NE
TP106	1.5	NE	0.0-0.4	0.4-1.5	NE
TP107	1.5	NE	0.0-0.3	0.3-1.5	NE
TP108	1.5	NE	0.0-0.4	0.4-1.5	NE
TP109	1.5	NE	0.0-0.3	0.3-1.5	NE
TP110	1.5	NE	0.0-0.3	0.3-1.5	NE
TP111	1.5	NE	0.0-0.3	0.3-1.5	NE
TP112	1.5	NE	0.0-0.3	0.3-1.5	NE
TP113	1.5	NE	0.0-0.3	0.3-1.5	NE

8599/28-AA

Newpark Precinct 6 – Elara Blvd, Marsden Park

Test Pit	Termination Depth (m)	Topsoil (m)	Fill (m)	Natural (m)	Bedrock (m)
TP114	1.5	NE	0.0-0.3	0.3-1.5	NE
TP115	1.5	NE	0.0-0.3	0.3-1.5	NE
TP116	1.5	NE	0.0-0.3	0.3-1.5	NE
TP117	1.5	NE	VE 0.0-0.3 0.3-1.5		NE
TP118	1.5	NE	0.0-0.3 0.3-1.5		NE
TP119	1.5	NE	0.0-0.3	0.3-1.5	NE
TP120	1.5	NE	0.0-0.3	0.3-1.5	NE
TP121	1.5	NE	0.0-0.9	0.9-1.5	NE
TP122	P122 1.5 NE		0.0-1.2	1.2-1.5	NE
TP123	1.5	NE	0.0-1.5	NE	NE
TP124	1.5	NE	0.0-1.5	NE	NE
TP125	1.5	NE	0.0-1.5	NE	NE

NE: Not encountered to the termination depth

The materials encountered in the test pits can be generalised as below:

Topsoil	Silty Clay, low plasticity, dark brown, with grass roots
Fill	Silty Sandy Clay, low plasticity, brown
	Silty Clay, low to medium plasticity, dark brown, traces of ironstone
	Silty Clay, medium to high plasticity, grey and orange, with ironstone, gravel and cobbles
	Silty Clay, medium plasticity, red and grey, with ironstone gravel
	Silty Clay, low to medium plasticity, brown
	Silty Clay, high plasticity, grey, with ironstone gravel
	Silty Clay, low to medium plasticity, brown mottled grey
	Silty Clay, high plasticity, red
Natural	Silty CLAY, medium to high plasticity, pale grey, with ironstone gravel
	Silty CLAY, medium to high plasticity, pale grey and pale brown
	Silty Sandy CLAY, medium plasticity, pale grey and orange, with sandstone gravel
	Silty CLAY, medium to high plasticity, red mottled grey, traces of ironstone
	Silty CLAY, medium plasticity, grey, with red staining ironstone gravel and cobbles
	Silty CLAY, medium plasticity, grey/red, with ironstone gravel and cobbles
	Silty Sandy CLAY, low plasticity, red, with ironstone gravel
Bedrock	SILTSTONE, red and yellow-brown, extremely to distinctly weathered, very low to low strength

Groundwater Condition:

Groundwater was not observed in the test pits during the short time that they remained open. It must be noted that fluctuations in the level of groundwater might occur due to variations in rainfall, temperature, and/or other factors not evident during investigation.

8599/28-AA

Newpark Precinct 6 - Elara Blvd, Marsden Park

Exposure Classification Laboratory Testing

During field work, a total of 36 soil samples were collected for chemical testing in the NATA accredited laboratory of SGS for salinity and acidity properties. The laboratory test results certificates from SGS are attached at the end of this report and summarised in Table 2 along with exposure classification.

Table 2: Laboratory Test Results

	Test			EC EC	Multiplying	ECe	Exposure
Lots	Pit	Depth (m)	рН	(µS/cm)	Factor	(dS/m)	Classification
6058, 6059, 6088	TP1	0.2-0.3	6.4	240	8	1.92	A1
6060, 6061	TP2	0.2-0.3	5.8	500	8	4	A2
6062	TP3	0.2-0.3	-	-	8	-	A2
6063	TP4	0.2-0.3	4.8	650	8	5.2	A2
6064, 6065	TP5	0.2-0.3	5.6	240	8	1.92	A1
6066, 6067	TP6	0.7-0.8	4.6	320	8	2.56	A2
6068, 6069	TP7	0.7-0.8	4.6	1900	8	15.2	B1
6070, 6071	TP8	0.2-0.3	5.2	360	8	2.88	A2
6072, 6073	TP9	0.2-0.3	6.3	520	8	4.16	A2
6074, 6075	TP10	0.2-0.3	5	470	8	3.76	A2
6076, 6077	TP11	0.2-0.3	5.5	350	8	2.8	A2
6078, 6079	TP12	0.7-0.8	5.1	230	8	1.84	A2
6080, 6081	TP13	0.2-0.3	4.9	510	8	4.08	A2
6082, 6083	TP14	0.2-0.3	4.9	710	8	5.68	A2
6084, 6085	TP15	0.7-0.8	5	670	8	5.36	A2
6086, 6087, 6089	TP16	0.2-0.3	5.2	370	8	2.96	A2
6031, 6030	TP17	0.2-0.3	5	510	8	4.08	A2
6029, 6028	TP18	0.2-0.3	5.3	480	8	3.84	A2
6028, 6027	TP19	0.2-0.3	4.7	280	8	2.24	A2
6057, 6056	TP20	0.2-0.3	4.9	760	8	6.08	A2
6054, 6055	TP21	0.2-0.3	4.6	560	8	4.48	A2
6052, 6053	TP22	0.2-0.3	5	470	8	3.76	A2
6050, 6051	TP23	0.2-0.3	5	190	8	1.52	A2
6048, 6049	TP24	0.7-0.8	5.2	620	8	4.96	A2
6046, 6047	TP25	0.7-0.8	5.2	400	8	3.2	A2
6045	TP26	0.2-0.3	5.3	220	8	1.76	A2
6043, 6044	TP27	0.7-0.8	5.2	400	8	3.2	A2
6041, 6042	TP28	0.7-0.8	4.8	580	8	4.64	A2
6039, 6040	TP29	0.2-0.3	5.1	350	8	2.8	A2
6037, 6038	TP30	0.2-0.3	5.1	590	8	4.72	A2

8599/28-AA Newpark Precinct 6 – Elara Blvd, Marsden Park

Lots	Test Pit	Depth (m)	pН	EC (µS/cm)	Multiplying Factor	ECe (dS/m)	Exposure Classification
6035, 6036	TP31	0.7-0.8	4.5	570	8	4.56	B1
6033, 6034	TP32	0.2-0.3	5	580	8	4.64	A2
6004, 6003	TP33	0.2-0.3	4.8	610	8	4.88	A2
6001, 6002	TP34	0.2-0.3	4.7	860	8	6.88	A2
6025, 6026	TP35	0.2-0.3	5.5	180	8	1.44	A2
6023, 6024	TP36	0.2-0.3	5	420	8	3.36	A2
6021, 6022	TP37	0.2-0.3	5.5	290	8	2.32	A2
6019, 6020	TP38	0.2-0.3	5.4	290	8	2.32	A2
6017, 6018	TP39	0.5-0.6	5.4	110	8	0.88	A2
6015, 6016	TP40	0.2-0.3	5.4	220	8	1.76	A2
6013, 6014	TP41	0.2-0.3	5.5	160	8	1.28	A2
6011, 6012	TP42	0.2-0.3	5.4	100	8	0.8	A2
6009, 6010	TP43	0.5-0.6	5.2	340	8	2.72	A2
6007, 6008	TP44	0.5-0.6	5.3	230	8	1.84	A2
6005, 6006	TP45	0.5-0.6	4.8	420	8	3.36	A2
6089, 6090	TP46	0.5-0.6	5	830	8	6.64	A2
6125, 6126	TP47	0.5-0.6	4.9	740	8	5.92	A2
6123, 6124	TP48	0.5-0.6	4.9	840	8	6.72	A2
6121, 6122	TP49	0.2-0.3	5.2	700	8	5.6	A2
6119, 6120	TP50	0.5-0.6	5	1200	8	9.6	B1
6117, 6118	TP51	0.5-0.6	5.5	1500	8	12	B1
6115, 6116	TP52	0.2-0.3	5	640	8	5.12	A2
6113, 6114	TP53	0.2-0.3	4.7	890	8	7.12	A2
6111, 6112	TP54	0.2-0.3	4.5	650	8	5.2	B1
6108, 6109, 6110	TP55	0.2-0.3	5	740	8	5.92	A2
6107, 6106	TP56	0.5-0.6	5	710	8	5.68	A2
6104, 6105	TP57	0.5-0.6	4.9	900	8	7.2	A2
6103, 6102	TP58	0.5-0.6	5	960	8	7.68	A2
6101, 6100	TP59	0.5-0.6	5.2	650	8	5.2	A2
6098, 6099	TP60	0.5-0.6	5.1	800	8	6.4	A2
6096, 6097	TP61	0.5-0.6	4.9	500	8	4	A2
6094, 6095	TP62	0.5-0.6	4.9	610	8	4.88	A2
6093	TP63	0.5-0.6	5.3	510	8	4.08	A2
6092, 6091	TP64	0.5-0.6	5.4	240	8	1.92	A2
6127, 6128	TP65	0.2-0.3	5.4	590	8	4.72	A2

8599/28-AA Newpark Precinct 6 – Elara Blvd, Marsden Park

Lots	Test Pit	Depth (m)	рН	EC (µS/cm)	Multiplying Factor	ECe (dS/m)	Exposure Classification
6148, 6149	TP66	0.2-0.3	5.2	640	8	5.12	A2
6146, 6147	TP67	0.2-0.3	5.2	970	8	7.76	A2
6144, 6145	TP68	0.5-0.6	5.5	720	8	5.76	A2
6142, 6143	TP69	0.5-0.6	5.4	410	8	3.28	A2
6140, 6141	TP70	0.2-0.3	5	680	8	5.44	A2
6139	TP71	0.2-0.3	5	550	8	4.4	A2
6137, 6138	TP72	0.5-0.6	5.4	300	8	2.4	A2
6135, 6136	TP73	0.2-0.3	5.1	550	8	4.4	A2
6133, 6134	TP74	0.5-0.6	4.9	540	8	4.32	A2
6132, 6131	TP75	0.5-0.6	5.3	510	8	4.08	A2
6129, 6130	TP76	0.2-0.3	6.1	300	8	2.4	A1
6150, 6151	TP77	0.2-0.3	5.5	280	8	2.24	A2
6167, 6168	TP78	0.2-0.3	5.6	320	8	2.56	A1
6165, 6166	TP79	0.5-0.6	5.4	360	8	2.88	A2
6162, 6163, 6164	TP80	0.5-0.6	7.2	630	8	5.04	A2
6160, 6161	TP81	0.5-0.6	5.7	250	8	2	A1
6158, 6159	TP82	0.5-0.6	4.7	120	8	0.96	A2
6156, 6157	TP83	0.2-0.3	8.7	620	8	4.96	A2
6154, 6155	TP84	0.5-0.6	6.4	990	8	7.92	A2
6152, 6153	TP85	0.5-0.6	5.8	300	8	2.4	A1
6175, 6176	TP86	0.2-0.3	5.7	370	8	2.96	A1
6173, 6174	TP87	0.2-0.3	5.7	270	8	2.16	A1
6171, 6172	TP88	0.2-0.3	5.7	190	8	1.52	A1
6169, 6170	TP89	0.5-0.6	6.1	730	8	5.84	A2
6185, 6186	TP90	0.5-0.6	5.2	540	8	4.32	A2
6183, 6184	TP91	0.5-0.6	5.2	970	8	7.76	A2
6181, 6182	TP92	0.5-0.6	5.1	780	8	6.24	A2
6179, 6180	TP93	0.5-0.6	5.1	640	8	5.12	A2
6177, 6178	TP94	0.2-0.3	5.6	84	8	0.672	A1
6187, 6188	TP95	0.5-0.6	5.8	210	8	1.68	A1
6248, 6247	TP96	0.2-0.3	5.1	200	8	1.6	A2
6245, 6246	TP97	0.2-0.3	5.3	220	8	1.76	A2
6243, 6244	TP98	0.2-0.3	5.2	210	8	1.68	A2
6241, 6242	TP99	0.2-0.3	4.7	370	8	2.96	A2
6239, 6240	TP100	0.2-0.3	5.3	370	8	2.96	A2

8599/28-AA Newpark Precinct 6 – Elara Blvd, Marsden Park

Lots	Test Pit	Depth (m)	рН	EC (µS/cm)	Multiplying Factor	ECe (dS/m)	Exposure Classification
6237, 6238	TP101	0.5-0.6	5.3	42	8	0.336	A2
6235, 6236	TP102	0.2-0.3	5.4	35	8	0.28	A2
6233, 6234	TP103	0.2-0.3	5.2	290	8	2.32	A2
6231, 6232	TP104	0.5-0.6	5.2	230	8	1.84	A2
6229, 6230	TP105	0.5-0.6	5.3	200	8	1.6	A2
6227, 6228	TP106	0.5-0.6	5.4	120	8	0.96	A2
6225, 6226	TP107	0.2-0.3	5.7	84	8	0.672	A1
6223, 6224	TP108	0.5-0.6	5.4	39	8	0.312	A2
6221, 6222	TP109	0.5-0.6	5.4	250	8	2	A2
6219, 6220	TP110	0.5-0.6	5.2	97	8	0.776	A2
6217, 6218	TP111	0.5-0.6	4.9	310	8	2.48	A2
6215, 6216	TP112	0.5-0.6	5.1	90	8	0.72	A2
6213, 6214	TP113	0.2-0.3	5.5	190	8	1.52	A2
6211, 6212	TP114	0.5-0.6	5.2	100	8	0.8	A2
6209, 6010	TP115	0.2-0.3	5.7	140	8	1.12	A1
6207, 6208	TP116	0.5-0.6	5.6	130	8	1.04	A1
6205, 6206	TP117	0.5-0.6	5.1	250	8	2	A2
6203, 6204	TP118	0.5-0.6	5.3	330	8	2.64	A2
6201, 6202	TP119	0.2-0.3	5.5	21	8	0.168	A2
6199, 6200	TP120	0.2-0.3	5.3	130	8	1.04	A2
6197, 6198	TP121	0.5-0.6	5.4	220	8	1.76	A2
6195, 6196	TP122	0.2-0.3	5.7	120	8	0.96	A1
6193, 6194	TP123	0.2-0.3	5.7	73	8	0.584	A1
6191, 6192	TP124	0.5-0.6	5.5	74	8	0.592	A2
6189, 6190	TP125	0.2-0.3	5.5	97	8	0.776	A2

^{*} The multiplication factor (MF) is a function of the soil texture and description (Site Investigations for Urban Salinity – 2002)

Specifications

Electrical Conductivity (EC) testing was carried out to assess soil salinity, as outlined in the Department of Environment and Heritage (DEH) publication, "Site Investigations for Urban Salinity - 2002". The test conducted on a soil sample for salinity is generally made up of 1:5 soil water suspension, which is one part air dried soil to five parts distilled water. The determined EC is multiplied by a factor based on the texture of the soil sample (varying from 6 to 17) to obtain Corrected Electrical Conductivity designated as EC_e. Based on site observation, a multiplication factor of 8 was used for the soil encountered during field work. The DEH publication defines various classes of saline soils as follows:

8599/28-AA

Newpark Precinct 6 - Elara Blvd, Marsden Park

Classification	EC _e (dS/m)	Exposure Classification AS2870-2011
Non-saline	<2	A1
Slightly saline	2 – 4	
Moderately saline	4 – 8	A2
Very saline	8 – 16	B1
Highly saline	>16	B2

Acidity (pH) testing was also conducted to determine the aggressivity of the soils to steel and concrete. The various classes of aggressive soils are defined as follows according to AS2870-2011.

Classification	рН	Exposure Classification AS2870-2011
Non-aggressive	>5.5	A1
Mild	4.5-5.5	A2
Moderate	4.0-4.5	B1
Severe	<4.0	B2

Based on the results, it is assessed that soils at the site are generally non-saline to slightly saline and non-aggressive to mildly aggressive to steel and concrete.

Conclusion

Based on the procedures described in AS2870-2011 the exposure classifications for the proposed lots are shown in Table 3.

Table 3 – Site Exposure Classifications (AS2870-2011)

Lot	Exposure Classification	Lot	Exposure Classification	Lot	Exposure Classification	Lot	Exposure Classification
6001	A2	6063	A2	6125	A2	6187	A1
6002	A2	6064	A1	6126	A2	6188	A1
6003	A2	6065	A1	6127	A2	6189	A2
6004	A2	6066	A2	6128	A2	6190	A2
6005	A2	6067	A2	6129	A1	6191	A2
6006	A2	6068	B2	6130	A1	6192	A2
6007	A2	6069	B2	6131	A2	6193	A1
6008	A2	6070	A2	6132	A2	6194	A1
6009	A2	6071	A2	6133	A2	6195	A1
6010	A2	6072	A2	6134	A2	6196	A1
6011	A2	6073	A2	6135	A2	6197	A2
6012	A2	6074	A2	6136	A2	6198	A2
6013	A2	6075	A2	6137	A2	6199	A2

8599/28-AA Newpark Precinct 6 – Elara Blvd, Marsden Park

Lot	Exposure Classification	Lot	Exposure Classification	Lot	Exposure Classification	Lot	Exposure Classification
6014	A2	6076	A2	6138	A2	6200	A2
6015	A2	6077	A2	6139	A2	6201	A2
6016	A2	6078	A2	6140	A2	6202	A2
6017	A2	6079	A2	6141	A2	6203	A2
6018	A2	6080	A2	6142	A2	6204	A2
6019	A2	6081	A2	6143	A2	6205	A2
6020	A2	6082	A2	6144	A2	6206	A2
6021	A2	6083	A2	6145	A2	6207	A1
6022	A2	6084	A2	6146	A2	6208	A1
6023	A2	6085	A2	6147	A2	6209	A1
6024	A2	6086	A2	6148	A2	6210	A1
6025	A2	6087	A2	6149	A2	6211	A2
6026	A2	6088	A1	6150	A2	6212	A2
6027	A2	6089	A2	6151	A2	6213	A2
6028	A2	6090	A2	6152	A1	6214	A2
6029	A2	6091	A2	6153	A1	6215	A2
6030	A2	6092	A2	6154	A2	6216	A2
6031	A2	6093	A2	6155	A2	6217	A2
6032	A2	6094	A2	6156	A2	6218	A2
6033	A2	6095	A2	6157	A2	6219	A2
6034	A2	6096	A2	6158	A2	6220	A2
6035	B1	6097	A2	6159	A2	6221	A2
6036	B1	6098	A2	6160	A1	6222	A2
6037	A2	6099	A2	6161	A1	6223	A2
6038	A2	6100	A2	6162	A2	6224	A2
6039	A2	6101	A2	6163	A2	6225	A1
6040	A2	6102	A2	6164	A2	6226	A1
6041	A2	6103	A2	6165	A2	6227	A2
6042	A2	6104	A2	6166	A2	6228	A2
6043	A2	6105	A2	6167	A1	6229	A2
6044	A2	6106	A2	6168	A1	6230	A2
6045	A2	6107	A2	6169	A2	6231	A2
6046	A2	6108	A2	6170	A2	6232	A2
6047	A2	6109	A2	6171	A1	6233	A2

8599/28-AA

Newpark Precinct 6 - Elara Blvd, Marsden Park

Lot	Exposure Classification	Lot	Exposure Classification	Lot	Exposure Classification	Lot	Exposure Classification
6048	A2	6110	A2	6172	A1	6234	A2
6049	A2	6111	B1	6173	A1	6235	A2
6050	A2	6112	B1	6174	A1	6236	A2
6051	A2	6113	A2	6175	A1	6237	A2
6052	A2	6114	A2	6176	A1	6238	A2
6053	A2	6115	A2	6177	A1	6239	A2
6054	A2	6116	A2	6178	A1	6240	A2
6055	A2	6117	B2	6179	A2	6241	A2
6056	A2	6118	B2	6180	A2	6242	A2
6057	A2	6119	B2	6181	A2	6243	A2
6058	A1	6120	B2	6182	A2	6244	A2
6059	A1	6121	A2	6183	A2	6245	A2
6060	A2	6122	A2	6184	A2	6246	A2
6061	A2	6123	A2	6185	A2	6247	A2
6062	A2	6124	A2	6186	A2	6248	A2

Based on the results of the post site works salinity assessment, the site is suitable for the residential subdivision development. The construction requirements for A1, A2 & B1 classifications are shown below (AS2870-2011, Table 5.3).

Classification	Minimum Design Characteristic Strength	Minimum Initial Curing
A1	20 MPa	3 days
A2	25 MPa	3 days
B1	32 MPa	7 days
B2	40 MPa	7 days

If you have any questions, please do not hesitate to contact the undersigned.

Yours faithfully GEOTECH TESTING PTY LTD

RAM RAVI-INDRAN
Geotechnical Engineer

Attached

Drawing No 8599/27-AA1 - Test Pit Location Plan Table A – Summary of Test Pits SGS Laboratory Test Results

TEST PIT NUMBER	DEPTH (m)	SAMPLE DEPTH (m)	MATERIAL DESCRIPTION
TP1	0.0-0.2	. ,	TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots
	0.2-0.4	0.2-0.3 (DS)	FILL: Silty Clay, low to medium plasticity, dark brown, traces of ironstone, M <omc, compacted<="" td="" well=""></omc,>
	0.4-1.5	0.7-0.8 (DS)	(CH) Silty CLAY, high plasticity, pale grey, with ironstone gravel, M≤PL, stiff
TP2	0.0-0.2		TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots
	0.2-0.3	0.2-0.3 (DS)	FILL: Silty Clay, low to medium plasticity, dark brown, traces of ironstone, M <omc, compacted<="" td="" well=""></omc,>
	0.3-1.5	0.7-0.8 (DS)	(CH) Silty CLAY, high plasticity, pale grey and pale brown, M≤PL, stiff
TP3	0.0-0.2	0.5-0.8 (U50)	TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots
	0.2-0.4	0.2-0.3 (DS)	FILL: Silty Clay, low to medium plasticity, dark brown, traces of ironstone, M <omc, compacted<="" td="" well=""></omc,>
	0.4-1.5	0.7-0.8 (DS)	(CH) Silty CLAY, high plasticity, pale grey and pale brown, M <pl, stiff<="" td=""></pl,>
TP4	0.0-0.2		TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots
	0.2-0.6	0.2-0.3 (DS)	(CH) Silty CLAY, high plasticity, red mottled grey, traces of ironstone, M <pl, stiff<="" td=""></pl,>
	0.6-1.2	0.7-0.8 (DS)	(CH) Silty CLAY, high plasticity, pale grey, with ironstone gravel, M <pl, stiff="" stiff<="" td="" to="" very=""></pl,>
	1.2-1.5	1.2-1.4 (DB)	(CI) Silty Sandy CLAY, medium plasticity, pale grey and orange, with sandstone gravel, M <pl, stiff="" stiff<="" td="" to="" very=""></pl,>
TP5	0.0-0.2		TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots
	0.2-0.4	0.2-0.3 (DS)	FILL: Silty Clay, low to medium plasticity, dark brown, traces of ironstone, M <omc, compacted<="" td="" well=""></omc,>
	0.4-1.5	0.7-0.8 (DS)	FILL: Silty Clay, medium to high plasticity, grey and orange, with ironstone, gravel and cobbles, M <omc, compacted<="" td="" well=""></omc,>

Our Ref: 85	599/27-AA		
TEST PIT NUMBER	DEPTH (m)	SAMPLE DEPTH (m)	MATERIAL DESCRIPTION
TP6	0.0-0.2		TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots
	0.2-1.0	0.2-0.3 (DS)	FILL: Silty Clay, medium plasticity, red and grey, with ironstone gravel, M <omc, compacted<="" td="" well=""></omc,>
	1.0-1.5	0.7-0.8 (DS)	FILL: Silty Clay, medium to high plasticity, grey and orange, with ironstone, gravel and cobbles, M <omc, compacted<="" td="" well=""></omc,>
TP7	0.0-0.2		TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots
	0.2-1.0	0.2-0.3 (DS)	(CH) Silty CLAY, high plasticity, red mottled grey, traces of ironstone, M <pl, stiff<="" td="" very=""></pl,>
	1.0-1.5	0.7-0.8 (DS)	(CH) Silty CLAY, high plasticity, pale grey, with ironstone
		1.0-1.2 (DB)	gravel, M <pl, stiff<="" td="" very=""></pl,>
TP8	0.0-0.2		TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots
	0.2-0.8	0.2-0.3 (DS)	FILL: Silty Clay, medium plasticity, red and grey, with ironstone gravel, M <omc, compacted<="" td="" well=""></omc,>
	0.8-1.5	0.7-0.8 (DS)	FILL: Silty Clay, medium to high plasticity, grey and orange, with ironstone, gravel and cobbles, M <omc, compacted<="" td="" well=""></omc,>
TP9	0.0-0.2		TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots
	0.2-0.3	0.2-0.3 (DS)	FILL: Silty Clay, medium plasticity, red and grey, with ironstone gravel, M <omc, compacted<="" td="" well=""></omc,>
	0.3-1.0	0.7-0.8 (DS)	(CH) Silty CLAY, high plasticity, red mottled grey, traces of ironstone, M <pl, stiff<="" td="" very=""></pl,>
	1.0-1.5		(CH) Silty CLAY, high plasticity, pale grey, with ironstone gravel, M <pl, stiff<="" td="" very=""></pl,>

	99/27-AA		
TEST PIT NUMBER	DEPTH (m)	SAMPLE DEPTH (m)	MATERIAL DESCRIPTION
TP10	0.0-0.2		TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots
	0.2-0.3	0.2-0.3 (DS)	FILL: Silty Clay, low to medium plasticity, dark brown, traces of ironstone, M <omc, compacted<="" td="" well=""></omc,>
	0.3-1.3	0.7-0.8 (DS)	(CH) Silty CLAY, high plasticity, red mottled grey, traces of ironstone, M <pl, stiff<="" td="" very=""></pl,>
	1.3-1.5		(CH) Silty CLAY, high plasticity, pale grey, with ironstone gravel, M <pl, stiff<="" td="" very=""></pl,>
TP11	0.0-0.2		TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots
	0.2-0.4	0.2-0.3 (DS)	FILL: Silty Clay, low to medium plasticity, dark brown, traces of ironstone, M <omc, compacted<="" td="" well=""></omc,>
	0.4-1.0	0.7-0.8 (DS)	(CH) Silty CLAY, high plasticity, red mottled grey, traces of ironstone, M <pl, stiff<="" td="" very=""></pl,>
	1.0-1.5		(CI) Silty Sandy CLAY, medium plasticity, dark brown and red, with sandstone gravel, M <pl, stiff<="" td="" very=""></pl,>
TP12	0.0-0.2		TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots
	0.2-0.9	0.2-0.3 (DS)	FILL: Silty Clay, low to medium plasticity, brown, with ironstone, gravel and cobbles, M <omc, compacted<="" td="" well=""></omc,>
	0.9-1.5	0.7-0.8 (DS)	(CH) Silty CLAY, high plasticity, pale grey and pale brown, M <pl, stiff="" stiff<="" td="" to="" very=""></pl,>
TP13	0.0-0.2		TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots
	0.2-0.5	0.2-0.3 (DS)	(CH) Silty CLAY, high plasticity, red mottled grey, traces of ironstone, M <pl, stiff<="" td="" very=""></pl,>
	0.5-1.5	0.7-0.8 (DS)	(CI) Silty Sandy CLAY, medium plasticity, pale grey and orange, with sandstone gravel, M <pl, stiff<="" td="" very=""></pl,>
		0.2-0.5 (U50)	Statigo, with surfactions gravel, IVICI E, very still
TP14	0.0-0.2		TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots
	0.2-1.0	0.2-0.3 (DS)	(CH) Silty CLAY, high plasticity, pale grey, with ironstone gravel, M <pl, stiff<="" td="" very=""></pl,>
	1.0-1.5	0.7-0.8 (DS) 1.1-1.3 (DB)	(CI) Silty CLAY, medium plasticity, grey, with red staining ironstone gravel and cobbles, M <pl, hard<="" td=""></pl,>

Our Ref: 85	99/27-AA		
TEST PIT NUMBER	DEPTH (m)	SAMPLE DEPTH (m)	MATERIAL DESCRIPTION
TP15	0.0-0.2		TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots
	0.2-1.3	0.2-0.3 (DS)	(CH) Silty CLAY, high plasticity, pale grey and pale brown, M <pl, stiff<="" td="" very=""></pl,>
	1.3-1.5	0.7-0.8 (DS)	(CI) Silty CLAY, medium plasticity, grey, with red staining ironstone gravel and cobbles, M <pl, stiff<="" td="" very=""></pl,>
TP16	0.0-0.2		TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots
	0.2-0.4	0.2-0.3 (DS)	FILL: Silty Clay, medium to high plasticity, grey and orange, with ironstone, gravel and cobbles, M <omc, compacted<="" td="" well=""></omc,>
	0.4-1.5	0.7-0.8 (DS)	(CI) Silty CLAY, medium plasticity, grey, with red staining ironstone gravel and cobbles, M <pl, hard<="" td=""></pl,>
TP17	0.0-0.2		TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots
	0.2-0.7	0.2-0.3 (DS)	FILL: Silty Clay, low to medium plasticity, dark brown, traces of ironstone, M <omc, compacted<="" td="" well=""></omc,>
	0.7-1.5	0.7-0.8 (DS)	(CI) Silty CLAY, medium plasticity, grey, with red staining ironstone gravel and cobbles, M <pl, hard<="" td=""></pl,>
TP18	0.0-0.2		TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots
	0.2-0.4	0.2-0.3 (DS)	FILL: Silty Clay, low to medium plasticity, dark brown, traces of ironstone, M <omc, compacted<="" td="" well=""></omc,>
	0.4-1.5	0.7-0.8 (DS)	(CI) Silty CLAY, medium plasticity, grey/red, with ironstone gravel and cobbles, M <pl, stiff<="" td="" very=""></pl,>
TP19	0.0-0.7	0.2-0.3 (DS)	(CL) Silty Sandy CLAY, low plasticity, red, with ironstone gravel, M <pl, hard<="" stiff="" td="" to="" very=""></pl,>
	0.7-0.9	0.7-0.8 (DS)	(CH) Silty CLAY, high plasticity, pale grey and pale brown, M <pl, hard<="" stiff="" td="" to="" very=""></pl,>
	0.9-1.5		(CI) Silty CLAY, medium plasticity, grey, with red staining ironstone gravel and cobbles, M <pl, hard<="" stiff="" td="" to="" very=""></pl,>

Our Ref: 85	99/27-AA		
TEST PIT NUMBER	DEPTH (m)	SAMPLE DEPTH (m)	MATERIAL DESCRIPTION
TP20	0.0-0.2		TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots
	0.2-0.8	0.2-0.3 (DS)	(CH) Silty CLAY, high plasticity, pale grey and pale brown, M <pl, hard<="" stiff="" td="" to="" very=""></pl,>
	0.8-1.5	0.7-0.8 (DS)	(CH) Silty CLAY, high plasticity, pale grey, with ironstone gravel, M <pl, hard<="" stiff="" td="" to="" very=""></pl,>
TP21	0.0-0.5	0.2-0.3 (DS)	(CH) Silty CLAY, high plasticity, red mottled grey, traces of ironstone, M <pl, stiff<="" td="" very=""></pl,>
	0.5-1.3	0.7-0.8 (DS)	(CH) Silty CLAY, high plasticity, pale grey and pale brown, M <pl, stiff="" stiff<="" td="" to="" very=""></pl,>
	1.3-1.5		(CI) Silty CLAY, medium plasticity, grey, with red staining ironstone gravel and cobbles, M <pl, hard<="" td=""></pl,>
TP22	0.0-0.2		TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots
	0.2-1.2	0.2-0.3 (DS)	(CI-CH) Silty CLAY, high plasticity, pale grey and pale brown, M <pl, stiff="" stiff<="" td="" to="" very=""></pl,>
	1.2-1.5	0.7-0.8 (DS)	(CI) Silty CLAY, medium plasticity, grey, with red staining ironstone gravel and cobbles, M <pl, stiff="" stiff<="" td="" to="" very=""></pl,>
TP23	0.0-0.5	0.2-0.3 (DS)	FILL: Silty Clay, low to medium plasticity, dark brown, traces of ironstone, M <omc, compacted<="" td="" well=""></omc,>
	0.5-0.9	0.7-0.8 (DS)	(CI) Silty Sandy CLAY, medium plasticity, pale grey and orange, with sandstone gravel, M <pl, stiff="" stiff<="" td="" to="" very=""></pl,>
	0.9-1.5		(CH) Silty CLAY, high plasticity, pale grey, with ironstone gravel, M <pl, stiff="" stiff<="" td="" to="" very=""></pl,>
TP24	0.0-0.2		TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots
	0.2-0.6	0.2-0.3 (DS)	FILL: Silty Clay, medium to high plasticity, grey and orange, with ironstone, gravel and cobbles, M <omc, compacted<="" td="" well=""></omc,>
	0.6-1.5	0.7-0.8 (DS)	(CI-CH) Silty CLAY, medium to high plasticity, pale grey/red, with ironstone gravel and cobbles, M <pl, hard<="" stiff="" td="" to="" very=""></pl,>
		0.7-1.0 (U50)	

Our Ref: 85	599/27-AA		
TEST PIT NUMBER	DEPTH (m)	SAMPLE DEPTH (m)	MATERIAL DESCRIPTION
TP25	0.0-0.2		TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots
	0.2-0.5	0.2-0.3 (DS)	FILL: Silty Clay, low to medium plasticity, dark brown, traces of ironstone, M <omc, compacted<="" td="" well=""></omc,>
	0.5-1.3	0.7-0.8 (DS)	(CH) Silty CLAY, high plasticity, pale grey and pale brown, M <pl, stiff<="" td="" very=""></pl,>
	1.3-1.5		(CH) Silty CLAY, high plasticity, pale grey, with ironstone gravel, M <pl, stiff<="" td="" very=""></pl,>
TP26	0.0-0.2		TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots
	0.2-0.9	0.2-0.3 (DS)	(CH) Silty CLAY, high plasticity, pale grey and pale brown, M <pl, stiff<="" td="" very=""></pl,>
	0.9-1.5	0.7-0.8 (DS)	(CH) Silty CLAY, high plasticity, pale grey, with ironstone gravel, M <pl, stiff<="" td="" very=""></pl,>
TP27	0.0-0.2		TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots
	0.2-0.3	0.2-0.3 (DS)	FILL: Silty Clay, low to medium plasticity, dark brown, traces of ironstone, M <omc, compacted<="" td="" well=""></omc,>
	0.3-1.0	0.7-0.8 (DS)	(CI-CH) Silty CLAY, high plasticity, pale grey and pale brown, M <pl, stiff<="" td="" very=""></pl,>
	1.0-1.5		(CH) Silty CLAY, high plasticity, red mottled grey, traces of ironstone, M <pl, stiff<="" td="" very=""></pl,>
TP28	0.0-0.2		TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots
	0.2-1.2	0.2-0.3 (DS)	(CH) Silty CLAY, high plasticity, red mottled grey, traces of ironstone, M <pl, stiff<="" td="" very=""></pl,>
	1.2-1.5	0.7-0.8 (DS) 0.7-0.9 (DB)	(CH) Silty CLAY, high plasticity, pale grey, with ironstone gravel, M <pl, stiff<="" td="" very=""></pl,>

DEPTH (m)	SAMPLE DEPTH (m)	MATERIAL DESCRIPTION
0.0-0.2		TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots
0.2-0.3	0.2-0.3 (DS)	FILL: Silty Clay, low to medium plasticity, dark brown, traces of ironstone, M <omc, compacted<="" td="" well=""></omc,>
0.3-0.8	0.7-0.8 (DS)	(CH) Silty CLAY, high plasticity, red mottled grey, traces of ironstone, M <pl, stiff<="" td=""></pl,>
0.8-1.5		(CH) Silty CLAY, high plasticity, pale grey, with ironstone gravel, M <pl, stiff<="" td=""></pl,>
0.0-0.2		TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots
0.2-0.9	0.2-0.3 (DS)	(CH) Silty CLAY, high plasticity, pale grey and pale brown, M <pl, stiff<="" td=""></pl,>
0.9-1.3	0.7-0.8 (DS)	(CH) Silty CLAY, high plasticity, red mottled grey, traces of ironstone, M <pl, stiff="" stiff<="" td="" to="" very=""></pl,>
1.3-1.5		(CI) Silty CLAY, medium plasticity, grey, with red staining ironstone gravel and cobbles, M <pl, stiff="" stiff<="" td="" to="" very=""></pl,>
0.0-0.2		TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots
0.2-0.4	0.2-0.3 (DS)	FILL: Silty Clay, medium plasticity, red and grey, with ironstone gravel, M <omc, compacted<="" td="" well=""></omc,>
0.4-0.7		(CH) Silty CLAY, high plasticity, pale grey and pale brown, M <pl, stiff<="" td="" very=""></pl,>
0.7-1.5	0.7-0.8 (DS)	(CI) Silty Sandy CLAY, medium plasticity, pale grey and orange, with sandstone gravel, M <pl, stiff<="" td="" very=""></pl,>
0.0-0.2		TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots
0.2-0.4	0.2-0.3 (DS)	(CH) Silty CLAY, high plasticity, pale grey and pale brown, M <pl, hard<="" td=""></pl,>
0.4-1.5	0.7-0.8 (DS)	(CH) Silty CLAY, high plasticity, pale grey, with ironstone gravel, M <pl, hard<="" td=""></pl,>
	0.0-0.2 0.2-0.3 0.3-0.8 0.8-1.5 0.0-0.2 0.2-0.9 0.9-1.3 1.3-1.5 0.0-0.2 0.2-0.4 0.4-0.7 0.7-1.5	DEPTH (m) DEPTH (m) 0.0-0.2 0.2-0.3 (DS) 0.3-0.8 0.7-0.8 (DS) 0.8-1.5 0.0-0.2 0.2-0.9 0.2-0.3 (DS) 0.9-1.3 0.7-0.8 (DS) 0.0-0.2 0.2-0.3 (DS) 0.4-0.7 0.7-0.8 (DS) 0.0-0.2 0.7-0.8 (DS) 0.0-0.2 0.7-0.8 (DS)

TP33 0.0-0.2 TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots 1.3-1.5 TOPSOIL: Silty CLAY, high plasticity, pale grey and pale brown, M≤PL, very stiff (CH) Silty CLAY, high plasticity, pale grey, with ironstone gravel, M≤PL, very stiff TOPSOIL: Silty Clay, low plasticity, pale grey, with ironstone gravel, M≤PL, very stiff TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots TOPSOIL: Silty Clay, low to medium plasticity, dark brown, traces of ironstone, M-CMC, well compacted 0.5-1.0 0.7-0.8 (DS) (CI) Silty Sandy CLAY, medium plasticity, pale grey and orange, with sandstone gravel, M≺PL, very stiff (CH) Silty CLAY, high plasticity, red mottled grey, traces of ironstone, M-PL, very stiff TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots TOPSOIL: Silty Clay, low plasticity, red mottled grey, traces of ironstone, M-PL, very stiff TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots TOPSOIL: Silty Clay, medium plasticity, dark brown, with grass roots TOPSOIL: Silty Clay, medium plasticity, red and grey, with ironstone gravel, M-COMC, well compacted (CH) Silty Clay, medium plasticity, red mottled grey, traces of ironstone, M-PL, very stiff TOPSOIL: Silty Clay, low plasticity, red mottled grey, traces of ironstone, M-PL, very stiff	Our Ref: 85	199/27-AA	0.43457	
TP34 0.2-0.3 (DS) 0.7-0.8 (DS) 0.7-0.8 (DS) 0.3-0.5 (DB) 1.3-1.5 TP34 0.0-0.2 0.2-0.3 (DS) 0.2-0.3 (DS) 0.2-0.3 (DS) 1.3-1.5 (CH) Silty CLAY, high plasticity, pale grey and pale brown, MsPL, very stiff TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots 0.2-0.5 0.2-0.3 (DS) FILL: Silty Clay, low to medium plasticity, dark brown, traces of ironstone, M-OMC, well compacted 0.5-1.0 0.7-0.8 (DS) (CI) Silty Sandy CLAY, medium plasticity, pale grey and orange, with sandstone gravel, M-PL, very stiff (CH) Silty CLAY, high plasticity, red mottled grey, traces of ironstone, M-PL, very stiff (CH) Silty Clay, low plasticity, dark brown, with grass roots 0.2-1.2 0.5-0.6 (DS) FILL: Silty Clay, low plasticity, dark brown, with grass roots (CH) Silty CLAY, high plasticity, dark brown, with grass roots (CH) Silty Clay, low plasticity, dark brown, with grass roots TOPSOIL: Silty Clay, low plasticity, red mottled grey, traces of ironstone, M-PL, very stiff TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots 0.2-0.7 0.2-0.3 (DS) FILL: Silty Clay, medium plasticity, red and grey, with ironstone gravel, M-OMC, well compacted (CH) Silty CLAY, high plasticity, red mottled grey, traces of ironstone, gravel, M-OMC, well compacted (CH) Silty Clay, high plasticity, red and grey, with ironstone gravel, M-OMC, well compacted (CH) Silty Clay, high plasticity, red mottled grey, traces of ironstone, gravel, M-OMC, well compacted (CH) Silty CLAY, high plasticity, red mottled grey, traces of ironstone, M-PL, very stiff	TEST PIT NUMBER	DEPTH (m)	SAMPLE DEPTH (m)	MATERIAL DESCRIPTION
1.3-1.5 1.	TP33	0.0-0.2		TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots
1.3-1.5 1.3-1.6 1.3-1.6 1.3-1.6 1.3-1.7 1.3-1.7 1.3-1.8 1.3-1.8 1.3-1.8 1.3-1.8 1.3-1.9 1.		0.2-1.3	,	(CH) Silty CLAY, high plasticity, pale grey and pale brown, M≤PL, very stiff
roots 0.2-0.5		1.3-1.5		(CH) Silty CLAY, high plasticity, pale grey, with ironstone gravel, M≤PL, very stiff
traces of ironstone, M <omc, (ch)="" (ci)="" (ds)="" 0.0-0.2="" 0.2-0.3="" 0.5-1.0="" 0.7-0.8="" 0.7-1.5="" 0.8-0.9="" and="" brown,="" clay,="" compacted="" dark="" fill:="" grass="" gravel,="" grey="" grey,="" high="" ironstone="" ironstone,="" low="" m<omc,="" m<pl,="" medium="" mottled="" of="" orange,="" pale="" plasticity,="" red="" roots="" roots<="" sandstone="" sandy="" silty="" stiff="" td="" to="" topsoil:="" tp35="" tp36="" tp37="" traces="" very="" well="" with=""><td>TP34</td><td>0.0-0.2</td><td></td><td>TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots</td></omc,>	TP34	0.0-0.2		TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots
orange, with sandstone gravel, M <pl, (ch)="" (ds)="" 0.0-0.2="" 0.2-0.3="" 0.2-0.7="" 0.7-1.5="" 0.8-0.9="" 1.0-1.5="" and="" brown,="" clay,="" compacted="" dark="" fill:="" grass="" gravel,="" grey,="" high="" ironstone="" ironstone,="" low="" m<omc,="" m<pl,="" medium="" mottled="" of="" plasticity,="" red="" roots="" roots<="" silty="" stiff="" td="" to="" topsoil:="" tp35="" tp37="" traces="" very="" well="" with=""><td></td><td>0.2-0.5</td><td>0.2-0.3 (DS)</td><td>FILL: Silty Clay, low to medium plasticity, dark brown, traces of ironstone, M<omc, compacted<="" td="" well=""></omc,></td></pl,>		0.2-0.5	0.2-0.3 (DS)	FILL: Silty Clay, low to medium plasticity, dark brown, traces of ironstone, M <omc, compacted<="" td="" well=""></omc,>
TP35 0.0-0.2 0.2-0.3 (DS) TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots 0.2-1.2 0.5-0.6 (DS) FILL: Silty Clay, low to medium plasticity, dark brown, traces of ironstone, M <omc, (ch)="" (ds)="" 0.0-0.2="" 0.2-0.3="" 0.2-0.7="" 0.7-1.5="" 0.8-0.9="" 1.2-1.5="" and="" brown,="" clay,="" compacted="" dark="" fill:="" grass="" gravel,="" grey,="" high="" ironstone="" ironstone,="" low="" m<omc,="" m<pl,="" medium="" mottled="" of="" plasticity,="" red="" roots="" roots<="" silty="" stiff="" td="" topsoil:="" tp36="" tp37="" traces="" very="" well="" with=""><td></td><td>0.5-1.0</td><td>0.7-0.8 (DS)</td><td>(CI) Silty Sandy CLAY, medium plasticity, pale grey and orange, with sandstone gravel, M<pl, stiff<="" td="" very=""></pl,></td></omc,>		0.5-1.0	0.7-0.8 (DS)	(CI) Silty Sandy CLAY, medium plasticity, pale grey and orange, with sandstone gravel, M <pl, stiff<="" td="" very=""></pl,>
roots Compacted Compacted		1.0-1.5		(CH) Silty CLAY, high plasticity, red mottled grey, traces of ironstone, M <pl, stiff<="" td="" very=""></pl,>
traces of ironstone, M <omc, (ch)="" (ds)="" 0.0-0.2="" 0.2-0.3="" 0.2-0.7="" 0.7-1.5="" 0.8-0.9="" and="" brown,="" clay,="" compacted="" dark="" fill:="" grass="" gravel,="" grey,="" high="" ironstone="" ironstone,="" low="" m<omc,="" m<pl,="" medium="" mottled="" of="" plasticity,="" red="" roots="" roots<="" silty="" stiff="" td="" topsoil:="" tp37="" traces="" very="" well="" with=""><td>TP35</td><td>0.0-0.2</td><td>0.2-0.3 (DS)</td><td>TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots</td></omc,>	TP35	0.0-0.2	0.2-0.3 (DS)	TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots
TP36 0.0-0.2 TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots 0.2-0.7 0.2-0.3 (DS) FILL: Silty Clay, medium plasticity, red and grey, with ironstone gravel, M <omc, (ch)="" (ds)="" 0.0-0.2="" 0.2-0.3="" 0.7-1.5="" 0.8-0.9="" brown,="" clay,="" compacted="" dark="" grass="" grey,="" high="" ironstone,="" low="" m<pl,="" mottled="" of="" plasticity,="" red="" roots<="" silty="" stiff="" td="" topsoil:="" tp37="" traces="" very="" well="" with=""><td></td><td>0.2-1.2</td><td>0.5-0.6 (DS)</td><td>FILL: Silty Clay, low to medium plasticity, dark brown, traces of ironstone, M<omc, compacted<="" td="" well=""></omc,></td></omc,>		0.2-1.2	0.5-0.6 (DS)	FILL: Silty Clay, low to medium plasticity, dark brown, traces of ironstone, M <omc, compacted<="" td="" well=""></omc,>
0.2-0.7		1.2-1.5		(CH) Silty CLAY, high plasticity, red mottled grey, traces of ironstone, M <pl, stiff<="" td="" very=""></pl,>
ironstone gravel, M <omc, (ch)="" (ds)="" 0.0-0.2="" 0.2-0.3="" 0.7-1.5="" 0.8-0.9="" brown,="" clay,="" compacted="" dark="" grass="" grey,="" high="" ironstone,="" low="" m<pl,="" mottled="" of="" plasticity,="" red="" roots<="" silty="" stiff="" td="" topsoil:="" tp37="" traces="" very="" well="" with=""><td>TP36</td><td>0.0-0.2</td><td></td><td>TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots</td></omc,>	TP36	0.0-0.2		TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots
TP37 0.0-0.2 0.2-0.3 (DS) Of ironstone, M <pl, brown,="" clay,="" dark="" grass="" low="" plasticity,="" roots<="" silty="" stiff="" td="" topsoil:="" very="" with=""><td></td><td>0.2-0.7</td><td>0.2-0.3 (DS)</td><td>FILL: Silty Clay, medium plasticity, red and grey, with ironstone gravel, M<omc, compacted<="" td="" well=""></omc,></td></pl,>		0.2-0.7	0.2-0.3 (DS)	FILL: Silty Clay, medium plasticity, red and grey, with ironstone gravel, M <omc, compacted<="" td="" well=""></omc,>
roots		0.7-1.5	0.8-0.9 (DS)	(CH) Silty CLAY, high plasticity, red mottled grey, traces of ironstone, M <pl, stiff<="" td="" very=""></pl,>
0.2-1.3 0.5-0.6 (DS) FILL: Silty Clay low to medium placticity, brown mottled	TP37	0.0-0.2	0.2-0.3 (DS)	TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots
		0.2-1.3	0.5-0.6 (DS)	FILL: Silty Clay, low to medium plasticity, brown mottled grey, with traces of ironstone and sandstone gravel M <omc, compacted<="" td="" well=""></omc,>
1 3-1 5 (CH) Silty CLAV high placticity, pale groy and pale brown		1.3-1.5		(CH) Silty CLAY, high plasticity, pale grey and pale brown, M <pl, stiff<="" td="" very=""></pl,>

Our Ref: 85	99/27-AA		
TEST PIT NUMBER	DEPTH (m)	SAMPLE DEPTH (m)	MATERIAL DESCRIPTION
TP38	0.0-0.1		TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots
	0.1-0.4	0.2-0.3 (DS)	FILL: Silty Clay, low to medium plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>
	0.4-1.2	0.5-0.6 (DS)	FILL: Silty Clay, low to medium plasticity, dark brown, traces of ironstone, M <omc, compacted<="" td="" well=""></omc,>
	1.2-1.5		(CH) Silty CLAY, high plasticity, red mottled grey, traces of ironstone, M <pl, hard<="" stiff="" td="" to="" very=""></pl,>
TP39	0.0-0.2		FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>
	0.2-0.7	0.2-0.3 (DS)	FILL: Silty Clay, medium plasticity, red and grey, with ironstone gravel, M <omc, compacted<="" td="" well=""></omc,>
	0.7-1.5	0.5-0.6 (DS) 0.6-0.9 (U50)	(CH) Silty CLAY, high plasticity, red mottled grey, traces of ironstone, M <pl, stiff<="" td="" very=""></pl,>
TP40	0.0-0.2		TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots
	0.2-0.9	0.2-0.3 (DS)	FILL: Silty Clay, low to medium plasticity, brown mottled grey, M <omc, compacted<="" td="" well=""></omc,>
	0.9-1.5	0.5-0.6 (DS)	(CH) Silty CLAY, high plasticity, pale grey, with ironstone gravel, M <pl, hard<="" td=""></pl,>
TP41	0.0-0.2	0.2-0.3 (DS)	FILL: Silty Clay, low to medium plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>
	0.2-1.3	0.5-0.6 (DS)	(CH) Silty CLAY, high plasticity, red mottled grey, traces of ironstone, M <pl, stiff<="" td="" very=""></pl,>
	1.3-1.5		(CH) Silty CLAY, high plasticity, pale grey, with ironstone gravel, M <pl, stiff<="" td=""></pl,>
TP42	0.0-0.2	0.2-0.3 (DS)	FILL: Silty Clay, low to medium plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>
	0.2-0.9	0.5-0.6 (DS)	FILL: Silty Clay, medium plasticity, red and grey, with ironstone gravel, M <omc, compacted<="" td="" well=""></omc,>
	0.9-1.5	1.0-1.2 (DB)	(CH) Silty CLAY, high plasticity, pale grey, with ironstone gravel, M <pl, stiff<="" td="" very=""></pl,>

Our Ref: 8599/27-AA				
TEST PIT NUMBER	DEPTH (m)	SAMPLE DEPTH (m)	MATERIAL DESCRIPTION	
TP43	0.0-0.2	0.2-0.3 (DS)	FILL: Silty Clay, low to medium plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
	0.2-1.1	0.5-0.6 (DS)	FILL: Silty Clay, medium plasticity, red and grey, with ironstone gravel, M <omc, compacted<="" td="" well=""></omc,>	
	1.1-15		(CH) Silty CLAY, high plasticity, pale grey and pale brown, M <pl, hard<="" stiff="" td="" to="" very=""></pl,>	
TP44	0.0-0.2	0.2-0.3 (DS)	FILL: Silty Clay, low to medium plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
	0.2-0.9	0.5-0.6 (DS)	FILL: Silty Clay, medium plasticity, red and grey, with ironstone gravel, M <omc, compacted<="" td="" well=""></omc,>	
	0.9-1.5		(CH) Silty CLAY, high plasticity, pale grey, with ironstone gravel, M <pl, stiff<="" td="" very=""></pl,>	
TP45	0.0-0.2	0.2-0.3 (DS)	FILL: Silty Clay, low to medium plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
	0.2-0.8	0.5-0.6 (DS)	FILL: Silty Clay, low to medium plasticity, dark brown, traces of ironstone, M <omc, compacted<="" td="" well=""></omc,>	
	0.8-1.5	0.7-1.0 (U50)	(CH) Silty CLAY, high plasticity, pale grey, with ironstone gravel, M <pl, hard<="" stiff="" td="" to="" very=""></pl,>	
TP46	0.0-0.2	0.2-0.3 (DS)	FILL: Silty Clay, low to medium plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
	0.2-1.2	0.5-0.6 (DS)	FILL: Silty Clay, medium plasticity, red and grey, with ironstone gravel and cobbles, M <omc, compacted<="" td="" well=""></omc,>	
	1.2-1.5		(CH) Silty CLAY, high plasticity, pale grey, with ironstone gravel, M <pl, stiff="" stiff<="" td="" to="" very=""></pl,>	
TP47	0.0-0.2	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
	0.2-0.9	0.5-0.6 (DS)	FILL: Silty Clay, medium plasticity, red and grey, with ironstone gravel, M <omc, compacted<="" td="" well=""></omc,>	
	0.9-1.5	1.1-1.3 (DB)	(CH) Silty CLAY, high plasticity, pale grey and pale brown, with ironstone gravel, M <pl, stiff<="" td="" very=""></pl,>	

Our Ref: 8599/27-AA				
TEST PIT NUMBER	DEPTH (m)	SAMPLE DEPTH (m)	MATERIAL DESCRIPTION	
TP48	0.0-0.2	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
	0.2-0.8	0.5-0.6 (DS)	FILL: Silty Clay, high plasticity, grey, with ironstone gravel, M <omc, compacted<="" td="" well=""></omc,>	
	0.8-1.5		(CH) Silty CLAY, high plasticity, pale grey and pale brown, with ironstone gravel, M <pl, hard<="" stiff="" td="" to="" very=""></pl,>	
TP49	0.0-0.2	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
	0.2-0.8	0.5-0.6 (DS)	FILL: Silty Clay, high plasticity, grey, with ironstone gravel, M <omc, compacted<="" td="" well=""></omc,>	
	0.8-1.5		(CH) Silty CLAY, high plasticity, pale grey and pale brown, with ironstone gravel, M <pl, hard<="" stiff="" td="" to="" very=""></pl,>	
TP50	0.0-0.2	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
	0.2-0.9	0.5-0.6 (DS)	FILL: Silty Clay, high plasticity, grey, with ironstone gravel, M <omc, compacted<="" td="" well=""></omc,>	
	0.9-1.5		(CH) Silty CLAY, high plasticity, pale grey and pale brown, with ironstone gravel, M <pl, hard<="" stiff="" td="" to="" very=""></pl,>	
TP51	0.0-0.2	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
	0.2-0.6	0.5-0.6 (DS)	FILL: Silty Clay, high plasticity, grey, with ironstone gravel, M <omc, compacted<="" td="" well=""></omc,>	
	0.6-1.5		(CH) Silty CLAY, high plasticity, pale grey and pale brown, with ironstone gravel, M <pl, hard<="" stiff="" td="" to="" very=""></pl,>	
TP52	0.0-0.2	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
	0.2-0.8	0.5-0.6 (DS)	FILL: Silty Clay, low to medium plasticity, dark brown, traces of ironstone, M <omc, compacted<="" td="" well=""></omc,>	
	0.8-1.5		(CH) Silty CLAY, high plasticity, pale grey and pale brown, with ironstone gravel, M <pl, hard<="" stiff="" td="" to="" very=""></pl,>	

Our Ref: 8599/27-AA				
TEST PIT NUMBER	DEPTH (m)	SAMPLE DEPTH (m)	MATERIAL DESCRIPTION	
TP53	0.0-0.2	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
	0.2-0.8	0.5-0.6 (DS)	FILL: Silty Clay, low to medium plasticity, dark brown, traces of ironstone, M <omc, compacted<="" td="" well=""></omc,>	
	0.8-1.5		(CH) Silty CLAY, high plasticity, pale grey and pale brown, with ironstone gravel, M <pl, hard<="" stiff="" td="" to="" very=""></pl,>	
TP54	0.0-0.1	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
	0.1-0.7	0.5-0.6 (DS)	(CH) Silty CLAY, high plasticity, red mottled grey, traces of ironstone, M <pl, hard<="" td=""></pl,>	
	0.7-1.5		(CH) Silty CLAY, high plasticity, pale grey, with ironstone gravel, M <pl, hard<="" td=""></pl,>	
TP55	0.0-0.1	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
	0.1-0.7	0.5-0.6 (DS)	(CI) Silty Sandy CLAY, medium plasticity, pale grey and orange, with sandstone gravel, M <pl, stiff<="" td=""></pl,>	
	0.7-1.5		(CH) Silty CLAY, high plasticity, pale grey and pale brown, very stiff to hard	
TP56	0.0-0.1	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
	0.1-0.8	0.5-0.6 (DS)	(CI-CH) Silty CLAY, medium to high plasticity, pale grey, with sandstone, cobbles and boulders, M <pl, stiff="" stiff<="" td="" to="" very=""></pl,>	
	0.8-1.5		(CH) Silty CLAY, high plasticity, pale grey and pale brown, with ironstone gravel, M <pl, hard<="" stiff="" td="" to="" very=""></pl,>	
TP57	0.0-0.2	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
	0.2-1.5	0.5-0.6 (DS)	(CH) Silty CLAY, high plasticity, pale grey and pale brown, with ironstone gravel, M <pl, hard<="" stiff="" td="" to="" very=""></pl,>	
<u> </u>			ı	

NUMBER DEPTH (m) MATERIAL DESCRIPTION TP58 0.0-0.2 0.2-0.3 (DS) FILL: Silty Sandy Clay, low plasticity, brown, M <om compacted<="" td="" well=""> 0.2-1.5 0.5-0.6 (DS) (CH) Silty CLAY, high plasticity, pale grey and pale brow with ironstone gravel, M<pl, hard<="" stiff="" td="" to="" very=""> TP59 0.0-0.2 0.2-0.3 (DS) FILL: Silty Sandy Clay, low plasticity, brown, M<om compacted<="" td="" well=""> 0.2-1.5 0.5-0.6 (DS) (CH) Silty CLAY, high plasticity, pale grey and pale brow with ironstone gravel, M<pl, hard<="" stiff="" td="" to="" very=""> TP60 0.0-0.2 0.2-0.3 (DS) FILL: Silty Sandy Clay, low plasticity, brown, M<om compacted<="" td="" well=""> 0.2-1.5 0.5-0.6 (DS) (CH) Silty CLAY, high plasticity, pale grey and pale brow with ironstone gravel, M<pl, hard<="" stiff="" td="" to="" very=""> TP61 0.0-0.2 0.2-0.3 (DS) FILL: Silty Sandy Clay, low plasticity, brown, M<om compacted<="" td="" well=""> 0.2-1.5 0.5-0.6 (DS) (CI) Silty Sandy CLAY, medium plasticity, pale grey ard orange, with sandstone and ironstone gravel, M<pl, st="" stiff<="" td="" to="" very=""> TP62 0.0-0.2 0.2-0.3 (DS) FILL: Silty Sandy Clay, low plasticity, brown, M<om compacted<="" td="" well=""> 0.2-1.0 0.5-0.6 (DS) (CH) Silty CLAY, high plasticity, pale grey ard orange, with sandstone gravel and cobbles, M<pl, hard<="" stiff="" td="" to="" very=""> TP</pl,></om></pl,></om></pl,></om></pl,></om></pl,></om>	Our Ref: 8599/27-AA				
well compacted 0.2-1.5 0.5-0.6 (DS) (CH) Silty CLAY, high plasticity, pale grey and pale brow with ironstone gravel, M <pl, (ch)="" (ci)="" (db)="" (ds)="" (u50)="" 0.0-0.2="" 0.2-0.3="" 0.2-0.9="" 0.2-1.0="" 0.2-1.5="" 0.4-0.7="" 0.5-0.6="" 1.0-1.5="" 1.2-1.4="" and="" ard="" boulders,="" brow="" brown,="" clay,="" cobbles="" cobbles,="" compacted="" fill:="" gravel="" gravel,="" grey="" hard="" high="" ironstone="" low="" m<omi="" m<pl,="" medium="" orange,="" pale="" plasticity,="" sandstone="" sandy="" silty="" stiff="" stiff<="" stift="" th="" to="" tp60="" tp61="" tp62="" tp63="" very="" well="" with=""><th>TEST PIT NUMBER</th><th>DEPTH (m)</th><th>SAMPLE DEPTH (m)</th><th>MATERIAL DESCRIPTION</th></pl,>	TEST PIT NUMBER	DEPTH (m)	SAMPLE DEPTH (m)	MATERIAL DESCRIPTION	
with ironstone gravel, M <pl, (ch)="" (ci)="" (db)="" (ds)="" (u50)="" 0.0-0.2="" 0.2-0.3="" 0.2-0.9="" 0.2-1.0="" 0.2-1.5="" 0.4-0.7="" 0.5-0.6="" 1.0-1.5="" 1.2-1.4="" and="" ard="" boulders,="" brow="" brown,="" clay,="" cobbles="" cobbles,="" compacted="" fill:="" gravel="" gravel,="" grey="" hard="" high="" ironstone="" low="" m<om="" m<pl,="" medium="" orange,="" orange.<="" pale="" plasticity,="" sandstone="" sandy="" silty="" st="" stiff="" td="" to="" tp59="" tp60="" tp61="" tp62="" tp63="" very="" well="" with=""><td>TP58</td><td>0.0-0.2</td><td>0.2-0.3 (DS)</td><td>FILL: Silty Sandy Clay, low plasticity, brown, M<omc, compacted<="" td="" well=""></omc,></td></pl,>	TP58	0.0-0.2	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
well compacted 0.2-1.5		0.2-1.5	0.5-0.6 (DS)	(CH) Silty CLAY, high plasticity, pale grey and pale brown, with ironstone gravel, M <pl, hard<="" stiff="" td="" to="" very=""></pl,>	
with ironstone gravel, M <pl, (ch)="" (ci)="" (db)="" (ds)="" (u50)="" 0.0-0.2="" 0.2-0.3="" 0.2-0.9="" 0.2-1.5="" 0.4-0.7="" 0.5-0.6="" 1.0-1.5="" 1.2-1.4="" and="" ard="" boulders,="" brow="" brown,="" clay,="" cobbles="" cobbles,="" compacted="" fill:="" gravel="" gravel,="" grey="" grey,="" hard="" high="" ironstone="" ironstor="" low="" m<omi="" m<pl,="" medium="" orange,="" pale="" plasticity,="" sandstone="" sandy="" silty="" st="" sti<="" stiff="" td="" to="" tp60="" tp61="" tp62="" tp63="" very="" well="" with=""><td>TP59</td><td>0.0-0.2</td><td>0.2-0.3 (DS)</td><td>FILL: Silty Sandy Clay, low plasticity, brown, M<omc, compacted<="" td="" well=""></omc,></td></pl,>	TP59	0.0-0.2	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
TP60 0.0-0.2 0.2-0.3 (DS) FILL: Silty Sandy Clay, low plasticity, brown, M <om (ch)="" (ci)="" (db)="" (ds)="" 0.0-0.2="" 0.2-0.3="" 0.2-0.9="" 0.2-1.0="" 0.2-1.5="" 0.5-0.6="" 1.0-1.5="" 1.2-1.4="" and="" arrorange,="" boulders,="" brow="" brown,="" clay,="" cobbles="" cobbles,="" compacted="" fill:="" gravel="" gravel,="" grey="" hard="" high="" ironstone="" low="" m<om="" m<pl,="" medium="" pale="" plasticity,="" sand="" sandstone="" sandy="" silty="" st="" stiff="" stone="" td="" to="" tp61="" tp62="" tp63="" ve<="" very="" well="" with=""><td></td><td>0.2-1.5</td><td>0.5-0.6 (DS)</td><td>(CH) Silty CLAY, high plasticity, pale grey and pale brown,</td></om>		0.2-1.5	0.5-0.6 (DS)	(CH) Silty CLAY, high plasticity, pale grey and pale brown,	
well compacted 0.2-1.5 0.5-0.6 (DS) (CH) Silty CLAY, high plasticity, pale grey and pale brow with ironstone gravel, M <pl, (ch)="" (ci)="" (db)="" (ds)="" 0.0-0.2="" 0.2-0.3="" 0.2-0.9="" 0.2-1.0="" 0.2-1.5="" 0.5-0.6="" 1.0-1.5="" 1.2-1.4="" and="" are="" boulders,="" brow="" brown,="" clay,="" cobbles="" cobbles,="" compacted="" fill:="" gravel="" gravel,="" grey="" hard="" high="" ironstone="" low="" m<om="" m<pl,="" medium="" orange,="" pale="" plasticity,="" sandstone="" sandy="" silty="" st="" stiff="" td="" to="" to<="" tp61="" tp62="" tp63="" very="" well="" with=""><td></td><td></td><td>0.4-0.7 (U50)</td><td>with nonstone graves, with E, very still to hard</td></pl,>			0.4-0.7 (U50)	with nonstone graves, with E, very still to hard	
with ironstone gravel, M <pl, (ch)="" (ci)="" (db)="" (ds)="" 0.0-0.2="" 0.2-0.3="" 0.2-0.9="" 0.2-1.0="" 0.2-1.5="" 0.5-0.6="" 1.0-1.5="" 1.2-1.4="" and="" are="" boulders,="" brow="" brown,="" clay,="" cobbles="" cobbles,="" compacted="" fill:="" gravel="" gravel,="" grey="" hard="" high="" ironstone="" low="" m<om="" m<pl,="" medium="" orange,="" pale="" plasticity,="" sandstone="" sandy="" silty="" st="" stiff="" td="" to="" tp61="" tp62="" tp63="" ve<="" very="" well="" with=""><td>TP60</td><td>0.0-0.2</td><td>0.2-0.3 (DS)</td><td>FILL: Silty Sandy Clay, low plasticity, brown, M<omc, compacted<="" td="" well=""></omc,></td></pl,>	TP60	0.0-0.2	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
well compacted (CI) Silty Sandy CLAY, medium plasticity, pale grey ar orange, with sandstone and ironstone gravel, M <pl, (ch)="" (ci)="" (db)="" (ds)="" 0.0-0.2="" 0.2-0.3="" 0.2-0.9="" 0.5-0.6="" 1.0-1.5="" 1.2-1.4="" and="" ar="" boulders,="" brow="" brown,="" clay,="" cobbles="" cobbles,="" compacted="" fill:="" gravel="" gravel,="" grey="" grey,="" hard="" high="" ironstorestores.<="" low="" m<om="" m<pl,="" medium="" orange,="" pale="" plasticity,="" sandstone="" sandy="" silty="" st="" stiff="" td="" to="" tp62="" tp63="" ve="" very="" well="" with=""><td></td><td>0.2-1.5</td><td>0.5-0.6 (DS)</td><td>(CH) Silty CLAY, high plasticity, pale grey and pale brown, with ironstone gravel, M<pl, hard<="" stiff="" td="" to="" very=""></pl,></td></pl,>		0.2-1.5	0.5-0.6 (DS)	(CH) Silty CLAY, high plasticity, pale grey and pale brown, with ironstone gravel, M <pl, hard<="" stiff="" td="" to="" very=""></pl,>	
TP62 0.0-0.2 0.2-0.3 (DS) FILL: Silty Sandy Clay, low plasticity, brown, M <om (ch)="" (ci)="" (db)="" (ds)="" 0.0-0.2="" 0.2-0.3="" 0.2-0.9="" 0.2-1.0="" 0.5-0.6="" 1.0-1.5="" 1.2-1.4="" and="" ar="" boulders,="" brow="" brown,="" clay,="" cobbles="" cobbles,="" compacted="" fill:="" gravel="" gravel,="" grey="" hard="" high="" low="" m<om="" m<pl,="" medium="" orange,="" pale="" plasticity,="" sandstone="" sandy="" silty="" stiff="" td="" to="" tp63="" very="" very<="" vestiff="" well="" with=""><td>TP61</td><td>0.0-0.2</td><td>0.2-0.3 (DS)</td><td>FILL: Silty Sandy Clay, low plasticity, brown, M<omc, compacted<="" td="" well=""></omc,></td></om>	TP61	0.0-0.2	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
well compacted 0.2-1.0 0.5-0.6 (DS) (CH) Silty Sandy CLAY, high plasticity, pale grey ar orange, with sandstone gravel and cobbles, M <pl, (ch)="" (ci)="" (db)="" (ds)="" 0.0-0.2="" 0.2-0.3="" 0.2-0.9="" 0.5-0.6="" 0.9-1.5="" 1.0-1.5="" 1.2-1.4="" and="" ar="" boulders,="" brow="" brown,="" clay,="" cobbles="" compacted="" fill:="" gravel,="" grey="" grey,="" hard="" high="" ironstory<="" low="" m<omwell="" m<pl,="" medium="" orange,="" pale="" plasticity,="" sandstone="" sandy="" silty="" stiff="" td="" to="" tp63="" very="" with=""><td></td><td>0.2-1.5</td><td>0.5-0.6 (DS)</td><td>(CI) Silty Sandy CLAY, medium plasticity, pale grey and orange, with sandstone and ironstone gravel, M<pl, stiff="" stiff<="" td="" to="" very=""></pl,></td></pl,>		0.2-1.5	0.5-0.6 (DS)	(CI) Silty Sandy CLAY, medium plasticity, pale grey and orange, with sandstone and ironstone gravel, M <pl, stiff="" stiff<="" td="" to="" very=""></pl,>	
orange, with sandstone gravel and cobbles, M <pl, (ch)="" (ci)="" (db)="" (ds)="" 0.0-0.2="" 0.2-0.3="" 0.2-0.9="" 0.5-0.6="" 0.9-1.5="" 1.0-1.5="" 1.2-1.4="" and="" arorange,="" boulders,="" brow="" brown,="" clay,="" cobbles="" compacted="" fill:="" gravel,="" grey="" grey,="" hard="" high="" ironstored<="" low="" m<om="" m<pl,="" medium="" pale="" plasticity,="" sandstone="" sandy="" silty="" stiff="" td="" to="" tp63="" very="" vestiff="" well="" with=""><td>TP62</td><td>0.0-0.2</td><td>0.2-0.3 (DS)</td><td>FILL: Silty Sandy Clay, low plasticity, brown, M<omc, compacted<="" td="" well=""></omc,></td></pl,>	TP62	0.0-0.2	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
TP63 0.0-0.2 0.2-0.3 (DS) FILL: Silty Sandy Clay, low plasticity, brown, M <om (ch)="" (ci)="" (ds)="" 0.2-0.9="" 0.5-0.6="" ar="" clay,="" compacted="" gravel,="" grey="" grey,="" high="" ironstor<="" m<pl,="" medium="" orange,="" pale="" plasticity,="" sandstone="" sandy="" silty="" stiff="" td="" to="" very="" well="" with=""><td></td><td>0.2-1.0</td><td>0.5-0.6 (DS)</td><td>(CH) Silty Sandy CLAY, high plasticity, pale grey and orange, with sandstone gravel and cobbles, M<pl, stiff<="" td="" very=""></pl,></td></om>		0.2-1.0	0.5-0.6 (DS)	(CH) Silty Sandy CLAY, high plasticity, pale grey and orange, with sandstone gravel and cobbles, M <pl, stiff<="" td="" very=""></pl,>	
well compacted 0.2-0.9 0.5-0.6 (DS) (CI) Silty Sandy CLAY, medium plasticity, pale grey ar orange, with sandstone gravel, M <pl, (ch)="" clay,="" grey,="" high="" ironstor<="" pale="" plasticity,="" silty="" stiff="" td="" to="" very="" with=""><td></td><td>1.0-1.5</td><td>1.2-1.4 (DB)</td><td>(CH) Silty CLAY, high plasticity, pale grey and pale brown, with cobbles and boulders, M<pl, hard<="" stiff="" td="" to="" very=""></pl,></td></pl,>		1.0-1.5	1.2-1.4 (DB)	(CH) Silty CLAY, high plasticity, pale grey and pale brown, with cobbles and boulders, M <pl, hard<="" stiff="" td="" to="" very=""></pl,>	
orange, with sandstone gravel, M <pl, (ch)="" clay,="" grey,="" high="" ironstor<="" pale="" plasticity,="" silty="" stiff="" td="" to="" very="" with=""><td>TP63</td><td>0.0-0.2</td><td>0.2-0.3 (DS)</td><td>FILL: Silty Sandy Clay, low plasticity, brown, M<omc, compacted<="" td="" well=""></omc,></td></pl,>	TP63	0.0-0.2	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
		0.2-0.9	0.5-0.6 (DS)	(CI) Silty Sandy CLAY, medium plasticity, pale grey and orange, with sandstone gravel, M <pl, stiff="" stiff<="" td="" to="" very=""></pl,>	
		0.9-1.5		(CH) Silty CLAY, high plasticity, pale grey, with ironstone gravel, M <pl, hard<="" td=""></pl,>	

Our Ref: 8599/27-AA				
TEST PIT NUMBER	DEPTH (m)	SAMPLE DEPTH (m)	MATERIAL DESCRIPTION	
TP64	0.0-0.2	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
	0.2-0.8	0.5-0.6 (DS)	FILL: Silty Clay, medium plasticity, red and grey, with ironstone gravel, M <omc, compacted<="" td="" well=""></omc,>	
	0.8-1.5		(CH) Silty CLAY, high plasticity, red mottled grey, traces of ironstone, M <pl, hard<="" td=""></pl,>	
TP65	0.0-0.2	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
	0.2-0.9	0.5-0.6 (DS)	(CI) Silty Sandy CLAY, medium plasticity, pale grey and orange, with sandstone gravel, M <pl, stiff="" stiff<="" td="" to="" very=""></pl,>	
	0.9-1.5		(CH) Silty CLAY, high plasticity, pale grey and pale brown, M <pl, hard<="" stiff="" td="" to="" very=""></pl,>	
TP66	0.0-0.2	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
	0.2-1.1	0.5-0.6 (DS)	(CH) Silty CLAY, high plasticity, pale grey, with ironstone gravel, M <pl, hard<="" stiff="" td="" to="" very=""></pl,>	
	1.1-1.5		(CH) Silty CLAY, high plasticity, pale grey and pale brown, M <pl, hard<="" td=""></pl,>	
TP67	0.0-0.2	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
	0.2-1.5	0.5-0.6 (DS)	(CI-CH) Silty CLAY, medium to high plasticity, pale grey and yellow brown, with ironstone gravel, M <pl, hard<="" stiff="" td="" to="" very=""></pl,>	
TP68	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
	0.3-1.5	0.5-0.6 (DS)	(CI) Silty Sandy CLAY, medium plasticity, pale grey and orange, with sandstone and ironstone gravel, M <pl, hard<="" stiff="" td="" to="" very=""></pl,>	
TP69	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
	0.3-1.5	0.5-0.6 (DS)	(CI) Silty Sandy CLAY, medium plasticity, pale grey and orange, with ironstone gravel, M <pl, hard<="" stiff="" td="" to="" very=""></pl,>	

Our Ref: 8599/27-AA				
TEST PIT NUMBER	DEPTH (m)	SAMPLE DEPTH (m)	MATERIAL DESCRIPTION	
TP70	0.0-0.2	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
	0.2-0.7	0.5-0.6 (DS)	(CI) Silty Sandy CLAY, medium plasticity, pale grey and orange, with sandstone gravel, M <pl, stiff="" stiff<="" td="" to="" very=""></pl,>	
	0.7-1.5		(CH) Silty CLAY, high plasticity, pale grey and pale brown, with ironstone gravel, M <pl, stiff<="" td="" very=""></pl,>	
TP71	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Clay, low to medium plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
	0.3-1.5	0.5-0.6 (DS)	(CH) Silty CLAY, high plasticity, pale grey and pale brown, with ironstone gravel, M <pl, hard<="" td=""></pl,>	
TP72	0.0-0.2	0.2-0.3 (DS)	FILL: Silty Clay, low to medium plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
	0.2-0.9	0.5-0.6 (DS)	(CI) Silty Sandy CLAY, medium plasticity, pale grey and orange, with sandstone gravel, M <pl, stiff="" stiff<="" td="" to="" very=""></pl,>	
	0.9-1.5		(CH) Silty CLAY, high plasticity, pale grey and pale brown, with ironstone gravel, M <pl, hard<="" td=""></pl,>	
TP73	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
	0.3-1.5	0.5-0.6 (DS)	(CH) Silty CLAY, high plasticity, pale grey and pale brown, with ironstone gravel, M <pl, hard<="" td=""></pl,>	
TP74	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
	0.3-1.5	0.5-0.6 (DS)	(CI) Silty Sandy CLAY, medium plasticity, pale grey and orange, with ironstone gravel, M <pl, hard<="" stiff="" td="" to="" very=""></pl,>	
TP75	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
	0.3-0.9	0.5-0.6 (DS)	(CI) Silty Sandy CLAY, medium plasticity, pale grey and orange, with sandstone gravel, M <pl, hard<="" stiff="" td="" to="" very=""></pl,>	
	0.9-1.5		(CH) Silty CLAY, high plasticity, pale grey and pale brown, M <pl, stiff<="" td="" very=""></pl,>	

Our Ref: 8599/27-AA				
TEST PIT NUMBER	DEPTH (m)	SAMPLE DEPTH (m)	MATERIAL DESCRIPTION	
TP76	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
	0.3-1.1	0.5-0.6 (DS)	(CI-CH) Silty CLAY, medium plasticity, pale grey, with ironstone gravel, M <pl, stiff<="" td="" very=""></pl,>	
	1.1-1.5		(CI) Silty Sandy CLAY, medium plasticity, pale grey and orange, with sandstone gravel, M <pl, stiff<="" td="" very=""></pl,>	
TP77	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
	0.3-0.8	0.5-0.6 (DS)	(CI) Silty CLAY, medium plasticity, grey and yellow-brown, with red staining ironstone gravel and cobbles, M <pl, stiff="" stiff<="" td="" to="" very=""></pl,>	
	0.8-1.5		(CH) Silty CLAY, high plasticity, pale grey and pale brown, M <pl, hard<="" stiff="" td="" to="" very=""></pl,>	
TP78	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
	0.3-0.9	0.5-0.6 (DS)	(CI) Silty CLAY, medium plasticity, grey, with red staining ironstone gravel and cobbles, M <pl, stiff="" stiff<="" td="" to="" very=""></pl,>	
	0.9-1.5		(CI-CH) Silty CLAY, medium to high plasticity, pale grey and yellow-brown, M <pl, hard<="" stiff="" td="" to="" very=""></pl,>	
TP79	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
	0.3-0.7	0.5-0.6 (DS)	(CI) Silty CLAY, medium plasticity, grey, with red staining ironstone gravel and pebbles, M <pl, stiff<="" td="" very=""></pl,>	
	0.7-1.5		(CH) Silty CLAY, high plasticity, pale grey and pale brown, M <pl, hard<="" td=""></pl,>	
TP80	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
	0.3-0.6	0.5-0.6 (DS)	FILL: Silty Clay, low to medium plasticity, brown, with sandstone gravel, M <omc, compacted<="" td="" well=""></omc,>	
	0.6-1.5		(CI) Silty CLAY, medium plasticity, grey, with red staining ironstone gravel and cobbles, M <pl, stiff="" stiff<="" td="" to="" very=""></pl,>	

	Our Ref: 8599/27-AA				
TEST PIT NUMBER	DEPTH (m)	SAMPLE DEPTH (m)	MATERIAL DESCRIPTION		
TP81	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>		
	0.3-0.5	0.5-0.6 (DS)	FILL: Silty Clay, low to medium plasticity, brown, with sandstone gravel, M <omc, compacted<="" td="" well=""></omc,>		
	0.5-1.5		(CI) Silty CLAY, medium plasticity, grey, with red staining ironstone gravel and cobbles, M <pl, stiff<="" td="" very=""></pl,>		
TP82	0.0-0.6	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>		
	0.6-1.5	0.5-0.6 (DS)	(CI) Silty CLAY, medium plasticity, grey, with red staining ironstone gravel and pebbles, M <pl, stiff<="" td="" very=""></pl,>		
TP83	0.0-0.6	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>		
	0.6-1.5	0.5-0.6 (DS)	(CI) Silty CLAY, medium plasticity, grey, with red staining ironstone gravel and cobbles, M <pl, stiff<="" td="" very=""></pl,>		
TP84	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>		
	0.3-1.5	0.5-0.6 (DS)	(CH) Silty CLAY, high plasticity, grey mottled red-yellow, M <pl, hard<="" td=""></pl,>		
		0.5-0.8 (U50)			
TP85	0.0-0.5	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>		
	0.5-1.5	0.5-0.6 (DS)	(CI-CH) Silty CLAY, medium to high plasticity, orange and		
		1.0-1.2 (DB)	grey-brown, M <pl, stiff<="" td="" very=""></pl,>		
TP86	0.0-0.3	0.2-0.3 (DS)	TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots		
	0.3-0.4		SILTSTONE, red and yellow-brown, extremely to distinctly weathered, very low to low strength, with ironstone layers		
TP87	0.0-0.3	0.2-0.3 (DS)	TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots		
	0.3-0.4		SILTSTONE, red and yellow-brown, extremely to distinctly weathered, very low to low strength, with ironstone layers		

Our Ref: 85 TEST PIT NUMBER	DEPTH (m)	SAMPLE DEPTH (m)	MATERIAL DESCRIPTION
INCINIDEN			
TP88	0.0-0.3	0.2-0.3 (DS)	TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots
	0.3-0.4		SILTSTONE, red and yellow-brown, extremely to distinctly weathered, very low to low strength, with ironstone layers
TP89	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>
	0.3-1.5	0.5-0.6 (DS)	(CI-CH) Silty CLAY, medium to high plasticity, grey, with red staining ironstone gravel and cobbles, M <pl, hard<="" stiff="" td="" to="" very=""></pl,>
TP90	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>
	0.3-1.5	0.5-0.6 (DS)	(CI) Silty CLAY, medium plasticity, grey and yellow-red, with red staining ironstone gravel and cobbles, M <pl, stiff<="" td="" very=""></pl,>
TP91	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>
	0.3-0.4		SILTSTONE, red and yellow-brown, extremely to distinctly weathered, very low to low strength, with ironstone layers
TP92	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>
	0.3-1.5	0.5-0.6 (DS)	(CI) Silty CLAY, medium plasticity, grey, with red staining ironstone gravel and cobbles, M <pl, hard<="" stiff="" td="" to="" very=""></pl,>
TP93	0.0-0.3	0.2-0.3 (DS)	TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots
	0.3-1.5	0.5-0.6 (DS)	(CI) Silty CLAY, medium plasticity, grey, with red staining ironstone gravel and cobbles, M <pl, stiff<="" td="" very=""></pl,>
TP94	0.0-0.3	0.2-0.3 (DS)	TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots
	0.3-0.4		SILTSTONE, red and yellow-brown, extremely to distinctly weathered, very low to low strength, with ironstone layers

Our Ref: 8599/27-AA				
TEST PIT NUMBER	DEPTH (m)	SAMPLE DEPTH (m)	MATERIAL DESCRIPTION	
TP95	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
	0.3-1.5	0.5-0.6 (DS)	FILL: Silty Clay, low to medium plasticity, brown mottled grey, with shale and ironstone gravel, M <omc, compacted<="" td="" well=""></omc,>	
TP96	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
	0.3-1.5	0.5-0.6 (DS)	FILL: Silty Clay, low to medium plasticity, brown and red, with sandstone and ironstone gravel, M <omc, compacted<="" td="" well=""></omc,>	
TP97	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
	0.3-1.2	0.5-0.6 (DS)	FILL: Silty Clay, low to medium plasticity, brown and red, M <omc, compacted<="" td="" well=""></omc,>	
	1.2-1.5		(CH) Silty CLAY, high plasticity, pale grey and pale brown, M <pl, hard<="" stiff="" td="" to="" very=""></pl,>	
TP98	0.0-0.4	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
	0.4-1.2	0.5-0.6 (DS)	FILL: Silty Clay, low to medium plasticity, brown, with shale gravel, M <omc, compacted<="" td="" well=""></omc,>	
	1.2-1.5		(CH) Silty CLAY, high plasticity, pale grey and pale brown, M <pl, hard<="" stiff="" td="" to="" very=""></pl,>	
TP99	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
	0.3-1.5	0.5-0.6 (DS)	FILL: Silty Clay, low to medium plasticity, brown mottled grey, with sandstone and ironstone gravel, M <omc, compacted<="" td="" well=""></omc,>	
TP100	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>	
	0.3-1.2	0.5-0.6 (DS)	FILL: Silty Clay, low to medium plasticity, brown mottled grey, with sandstone and ironstone gravel, M <omc, compacted<="" td="" well=""></omc,>	
	1.2-1.5		(CH) Silty CLAY, high plasticity, red mottled grey, traces of ironstone, M <pl, hard<="" stiff="" td="" to="" very=""></pl,>	
			·	

Our Ref: 85	Our Ref: 8599/27-AA				
TEST PIT NUMBER	DEPTH (m)	SAMPLE DEPTH (m)	MATERIAL DESCRIPTION		
TP101	0.0-0.3	0.2-0.3 (DS)	TOPSOIL: Silty Clay, low plasticity, dark brown, with grass roots		
	0.3-0.7	0.5-0.6 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>		
	0.7-1.5		(CI) Silty CLAY, medium plasticity, grey, with red staining ironstone gravel and cobbles, M <pl, stiff<="" td="" very=""></pl,>		
TP102	0.0-0.5	0.2-0.3 (DS)	FILL: Silty Clay, low to medium plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>		
	0.5-1.5	0.5-0.6 (DS)	(CI) Silty CLAY, medium plasticity, grey, with red staining ironstone gravel and pebbles, M <pl, stiff="" stiff<="" td="" to="" very=""></pl,>		
TP103	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>		
	0.3-1.5	0.5-0.6 (DS)	(CI) Silty CLAY, medium plasticity, grey, with red staining ironstone gravel and cobbles, M <pl, stiff="" stiff<="" td="" to="" very=""></pl,>		
TP104	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>		
	0.3-1.5	0.5-0.6 (DS)	(CI) Silty CLAY, medium plasticity, grey, with red staining ironstone gravel and cobbles, M <pl, stiff="" stiff<="" td="" to="" very=""></pl,>		
TP105	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, with sandstone gravel, M <omc, compacted<="" td="" well=""></omc,>		
	0.3-1.5	0.5-0.6 (DS)	(CI) Silty CLAY, medium plasticity, grey, with red staining ironstone gravel, boulders and cobbles, M <pl, stiff<="" td="" very=""></pl,>		
TP106	0.0-0.4	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>		
	0.4-1.5	0.5-0.6 (DS)	(CI-CH) Silty CLAY, medium to high plasticity, grey and		
		0.6-0.9 (U50)	red, with ironstone gravel, M <pl, stiff="" stiff<="" td="" to="" very=""></pl,>		
TP107	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>		
	0.3-1.5	0.5-0.6 (DS)	(CI) Silty CLAY, medium plasticity, grey and yellow, with red staining ironstone gravel and cobbles, M <pl, stiff="" stiff<="" td="" to="" very=""></pl,>		

	Our Ref: 8599/27-AA				
TEST PIT NUMBER	DEPTH (m)	SAMPLE DEPTH (m)	MATERIAL DESCRIPTION		
TP108	0.0-0.4	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>		
	0.4-1.5	0.5-0.6 (DS)	(CI) Silty CLAY, medium plasticity, grey, with red staining ironstone gravel, pebbles and cobbles, M <pl, stiff="" stiff<="" td="" to="" very=""></pl,>		
TP109	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>		
	0.3-1.5	0.5-0.6 (DS)	(CH) Silty CLAY, high plasticity, red mottled grey, traces of ironstone, M <pi, stiff<="" td="" very=""></pi,>		
		0.7-0.9 (DB)	of fronstone, were, very still		
TP110	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>		
	0.3-1.5	0.5-0.6 (DS)	(CI) Silty CLAY, medium plasticity, grey, with red staining ironstone gravel and cobbles, M <pi, hard<="" stiff="" td="" to="" very=""></pi,>		
TP111	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>		
	0.3-1.5	0.5-0.6 (DS)	(CI) Silty Sandy CLAY, medium plasticity, pale grey and orange, with sandstone gravel, M <pl, hard<="" td=""></pl,>		
TP112	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>		
	0.3-1.5	0.5-0.6 (DS)	(CI) Silty Sandy CLAY, medium plasticity, pale grey and orange, with sandstone gravel, M <pl, stiff<="" td="" very=""></pl,>		
TP113	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>		
	0.3-1.5	0.5-0.6 (DS)	(CI) Silty CLAY, medium plasticity, grey, with red staining ironstone gravel and cobbles, M <pl, stiff="" stiff<="" td="" to="" very=""></pl,>		
TP114	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>		
	0.3-1.5	0.5-0.6 (DS)	(CI-CH) Silty CLAY, medium to high plasticity, brown and yellow, with pebbles and cobbles, M <pl, hard<="" stiff="" td="" to="" very=""></pl,>		
			1		

	Our Ref: 8599/27-AA				
TEST PIT NUMBER	DEPTH (m)	SAMPLE DEPTH (m)	MATERIAL DESCRIPTION		
TP115	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>		
	0.3-1.5	0.5-0.6 (DS)	(CI) Silty CLAY, medium plasticity, grey, with red staining ironstone gravel and cobbles, very stiff		
TP116	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>		
	0.3-1.5	0.5-0.6 (DS)	(CI) Silty CLAY, medium plasticity, red and brown-grey, with red staining ironstone gravel and cobbles, M <pl, stiff<="" td="" very=""></pl,>		
TP117	0.0-0.3	0.2 -0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>		
	0.3-1.5	0.5-0.6 (DS)	(CH) Silty CLAY, high plasticity, red mottled grey, traces		
		0.5-0.8 (U50)	of ironstone, M <pl, hard<="" td=""></pl,>		
TP118	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>		
	0.3-1.5	0.5-0.6 (DS)	(CI) Silty CLAY, medium plasticity, grey, with red staining ironstone gravel and cobbles, M <pl, hard<="" stiff="" td="" to="" very=""></pl,>		
TP119	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>		
	0.3-1.5	0.5-0.6 (DS)	(CI) Silty CLAY, medium plasticity, grey, with red staining ironstone gravel and cobbles, M <pl, stiff="" stiff<="" td="" to="" very=""></pl,>		
TP120	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>		
	0.3-1.5	0.5-0.6 (DS)	(CI) Silty CLAY, medium plasticity, grey, with red staining ironstone gravel and cobbles, M <pl, stiff="" stiff<="" td="" to="" very=""></pl,>		
TP121	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>		
	0.3-0.9	0.5-0.6 (DS)	FILL: Silty Clay, low to medium plasticity, brown mottled grey, with cobbles, M <omc, compacted<="" td="" well=""></omc,>		
	0.9-1.5		(CH) Silty CLAY, high plasticity, pale grey and pale brown, M <pl, stiff<="" td="" very=""></pl,>		

Our Ref: 8599/27-AA					
TEST PIT NUMBER	DEPTH (m)	SAMPLE DEPTH (m)	MATERIAL DESCRIPTION		
TP122	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>		
	0.3-1.2	0.5-0.6 (DS)	FILL: Silty Clay, low to medium plasticity, brown mottled grey, M <omc, compacted<="" td="" well=""></omc,>		
	1.2-1.5		(CH) Silty CLAY, high plasticity, pale grey and pale brown, M <pl, hard<="" stiff="" td="" to="" very=""></pl,>		
TP123	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>		
	0.3-1.5	0.5-0.6 (DS)	FILL: Silty Clay, low to medium plasticity, brown mottled grey, with pebbles, cobbles and ironstone gravel, M <omc, compacted<="" td="" well=""></omc,>		
TP124	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>		
	0.3-1.5	0.5-0.6 (DS)	FILL: Silty Clay, low to medium plasticity, brown mottled grey, with pebbles, cobbles and ironstone gravel, M <omc, compacted<="" td="" well=""></omc,>		
TP125	0.0-0.3	0.2-0.3 (DS)	FILL: Silty Sandy Clay, low plasticity, brown, M <omc, compacted<="" td="" well=""></omc,>		
	0.3-1.5	0.5-0.6 (DS)	FILL: Silty Clay, low to medium plasticity, brown mottled grey, M <omc, compacted<="" td="" well=""></omc,>		

ANALYTICAL REPORT

CLIENT DETAILS -

Address

Email

LABORATORY DETAILS

Laboratory

Contact Ram Ravi-Indran
Client Geotechnique

P.O. Box 880 NSW 2751 Manager Huong Crawford

SGS Alexandria Environmental

Address Unit 16, 33 Maddox St Alexandria NSW 2015

 Telephone
 02 4722 2700
 Telephone
 +61 2 8594 0400

 Facsimile
 02 4722 6161
 Facsimile
 +61 2 8594 0499

ram@geotech.com.au Email au.environmental.sydney@sgs.com

Project8599/28 Elara Boulevard, Marsden ParkSGS ReferenceSE196385 R0Order Number(Not specified)Date Received12/8/2019Samples117Date Reported21/8/2019

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Dong Liang

Metals/Inorganics Team Leader

Shane McDermott

Inorganic/Metals Chemist

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400 f +61 2 8594 0499 www.sgs.com.au

Member of the SGS Group

pH in soil (1:5) [AN101] Tested: 20/8/2019

			TP64	TP64	TP65	TP65	TP66
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3
			6/8/2019	6/8/2019	6/8/2019	6/8/2019	6/8/2019
PARAMETER	UOM	LOR	SE196385.001	SE196385.002	SE196385.003	SE196385.004	SE196385.005
рН	pH Units	0.1	9.2	5.4	5.4	5.6	5.2

			TP66	TP67	TP67	TP68	TP68
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6
			6/8/2019	6/8/2019	6/8/2019	6/8/2019	6/8/2019
PARAMETER	UOM	LOR	SE196385.006	SE196385.007	SE196385.008	SE196385.009	SE196385.010
рН	pH Units	0.1	4.9	5.2	5.3	6.3	5.5

			TP69	TP69	TP70	TP70	TP71
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3
			6/8/2019	6/8/2019	6/8/2019	6/8/2019	6/8/2019
PARAMETER	UOM	LOR	SE196385.011	SE196385.012	SE196385.013	SE196385.014	SE196385.015
рН	pH Units	0.1	5.2	5.4	5.0	5.6	5.0

			TP71	TP72	TP72	TP73	TP73
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6
			6/8/2019	6/8/2019	6/8/2019	6/8/2019	6/8/2019
PARAMETER	UOM	LOR	SE196385.016	SE196385.017	SE196385.018	SE196385.019	SE196385.020
рН	pH Units	0.1	5.2	6.2	5.4	5.1	5.0

рН	pH Units	0.1	6.7	4.9	5.6	5.3	6.1
PARAMETER	UOM	LOR	SE196385.021	SE196385.022	SE196385.023	SE196385.024	SE196385.025
			6/8/2019	6/8/2019	6/8/2019	6/8/2019	
			0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			11714	15/4	1575	1573	1770
			TP74	TP74	TP75	TP75	TP76

			TP76	TP77	TP77	TP78	TP78
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6
							7/8/2019
PARAMETER	UOM	LOR	SE196385.026	SE196385.027	SE196385.028	SE196385.029	SE196385.030
рН	pH Units	0.1	5.8	5.5	5.6	5.6	6.0

			TP79	TP79	TP80	TP80	TP81
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3
PARAMETER	UOM	LOR	SE196385.031	SE196385.032	SE196385.033	SE196385.034	SE196385.035
pH	pH Units	0.1	5.7	5.4	8.6	7.2	6.9

21/08/2019 Page 2 of 14

pH in soil (1:5) [AN101] Tested: 20/8/2019 (continued)

			TP81	TP82	TP82	TP83	TP83
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6
							7/8/2019
PARAMETER	UOM	LOR	SE196385.036	SE196385.037	SE196385.038	SE196385.039	SE196385.040
pH	pH Units	0.1	5.7	5.6	4.7	8.7	5.8

			TP84	TP84	TP85	TP85	TP86
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3
PARAMETER	UOM	LOR	SE196385.041	SE196385.042	SE196385.043	SE196385.044	SE196385.045
pH	pH Units	0.1	6.0	6.4	7.5	5.8	5.7

			TP87	TP88	TP89	TP89	TP90
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.2-0.3	0.2-0.3	0.5-0.6	0.2-0.3
							7/8/2019
PARAMETER	UOM	LOR	SE196385.046	SE196385.047	SE196385.048	SE196385.049	SE196385.050
рН	pH Units	0.1	5.7	5.7	5.7	6.1	5.6

			TP90	TP91	TP91	TP92	TP92
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6
							7/8/2019
PARAMETER	UOM	LOR	SE196385.051	SE196385.052	SE196385.053	SE196385.054	SE196385.055
pH	pH Units	0.1	5.2	6.4	5.2	5.7	5.1

			TP93	TP93	TP94	TP95	TP95
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.2-0.3	0.5-0.6
PARAMETER	UOM	LOR	SE196385.056	SE196385.057	SE196385.058	SE196385.059	SE196385.060
pH	pH Units	0.1	5.3	5.1	5.6	5.7	5.8

			TP96	TP96	TP97	TP97	TP98
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3
							7/8/2019
PARAMETER	UOM	LOR	SE196385.061	SE196385.062	SE196385.063	SE196385.064	SE196385.065
рН	pH Units	0.1	5.1	5.4	5.3	5.2	5.2

			TP98	TP99	TP99	TP100	TP100
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6
PARAMETER	UOM	LOR	SE196385.066	SE196385.067	SE196385.068	SE196385.069	SE196385.070
pH	pH Units	0.1	5.4	4.7	5.3	5.3	5.3

21/08/2019 Page 3 of 14

pH in soil (1:5) [AN101] Tested: 20/8/2019 (continued)

			TP101	TP101	TP102	TP102	TP103
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3
			8/8/2019	8/8/2019	8/8/2019	8/8/2019	8/8/2019
PARAMETER	UOM	LOR	SE196385.071	SE196385.072	SE196385.073	SE196385.074	SE196385.075
pH	pH Units	0.1	6.3	5.3	5.4	5.6	5.2

			TP103	TP104	TP104	TP105	TP105
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6
			8/8/2019	8/8/2019	8/8/2019	8/8/2019	8/8/2019
PARAMETER	UOM	LOR	SE196385.076	SE196385.077	SE196385.078	SE196385.079	SE196385.080
pH	pH Units	0.1	5.5	5.7	5.2	5.5	5.3

			TP106	TP106	TP107	TP108	TP108
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.2-0.3	0.5-0.6
			8/8/2019	8/8/2019	8/8/2019	8/8/2019	8/8/2019
PARAMETER	UOM	LOR	SE196385.081	SE196385.082	SE196385.083	SE196385.084	SE196385.085
pH	pH Units	0.1	5.4	5.8	5.7	5.6	5.4

			TP109	TP109	TP110	TP110	TP111
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3
			8/8/2019	8/8/2019	8/8/2019	8/8/2019	8/8/2019
PARAMETER	UOM	LOR	SE196385.086	SE196385.087	SE196385.088	SE196385.089	SE196385.090
рН	pH Units	0.1	6.3	5.4	7.1	5.2	5.3

			TP111	TP112	TP112	TP113	TP113
			SOIL	SOIL	SOIL	SOIL	SOIL
			SUIL	SUIL	SUIL	SUIL	
			0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6
			8/8/2019	8/8/2019	8/8/2019	8/8/2019	8/8/2019
PARAMETER	UOM	LOR	SE196385.091	SE196385.092	SE196385.093	SE196385.094	SE196385.095
рН	pH Units	0.1	4.9	5.6	5.1	6.7	5.5

			TP114	TP114	TP115	TP116	TP116
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.2-0.3	0.5-0.6
			8/8/2019	8/8/2019	8/8/2019	8/8/2019	8/8/2019
PARAMETER	UOM	LOR	SE196385.096	SE196385.097	SE196385.098	SE196385.099	SE196385.100
рН	pH Units	0.1	5.7	5.2	5.7	5.7	5.6

			TP117	TP117	TP118	TP118	TP119
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3
			8/8/2019	8/8/2019	8/8/2019	8/8/2019	8/8/2019
PARAMETER	UOM	LOR	SE196385.101	SE196385.102	SE196385.103	SE196385.104	SE196385.105
pH	pH Units	0.1	5.6	5.1	4.9	5.3	5.5

21/08/2019 Page 4 of 14

SE196385 R0

pH in soil (1:5) [AN101] Tested: 20/8/2019 (continued)

			TP119	TP120	TP120	TP121	TP121
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6
			8/8/2019	8/8/2019	8/8/2019	8/8/2019	8/8/2019
PARAMETER	UOM	LOR	SE196385.106	SE196385.107	SE196385.108	SE196385.109	SE196385.110
рН	pH Units	0.1	6.0	5.3	5.1	5.8	5.4

			TP122	TP122	TP123	TP124	TP124
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.2-0.3	0.5-0.6
			8/8/2019	8/8/2019	8/8/2019	8/8/2019	8/8/2019
PARAMETER	UOM	LOR	SE196385.111	SE196385.112	SE196385.113	SE196385.114	SE196385.115
pH	pH Units	0.1	5.7	5.6	5.7	5.6	5.5

			TP125	TP125
			SOIL	SOIL
			0.2-0.3	0.5-0.6
			8/8/2019	8/8/2019
PARAMETER	UOM	LOR	SE196385.116	SE196385.117
pH	pH Units	0.1	5.5	5.4

21/08/2019 Page 5 of 14

360

Conductivity of Extract (1:5 dry sample basis)

ANALYTICAL RESULTS

Conductivity and TDS by Calculation - Soil [AN106] Tested: 20/8/2019

Conductivity and TDS by Calculation - Soil [AN106]	Tested: 20/8/	/2019					
			TP64	TP64	TP65	TP65	TP66
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3 6/8/2019	0.5-0.6 6/8/2019	0.2-0.3 6/8/2019	0.5-0.6 6/8/2019	0.2-0.3 6/8/2019
PARAMETER	UOM	LOR	SE196385.001	SE196385.002	SE196385.003	SE196385.004	SE196385.005
Conductivity of Extract (1:5 as received)	μS/cm	1	570	210	530	200	560
Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	640	240	590	230	640
			TP66	TP67	TP67	TP68	TP68
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6
PARAMETER	UOM	LOR	6/8/2019 SE196385.006	6/8/2019 SE196385.007	6/8/2019 SE196385.008	6/8/2019 SE196385.009	6/8/2019 SE196385.010
Conductivity of Extract (1:5 as received)	μS/cm	1	480	830	510	660	590
Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	590	970	590	720	720
			TP69	TP69	TP70	TP70	TP71
			SOIL 0.2-0.3	SOIL 0.5-0.6	SOIL 0.2-0.3	SOIL 0.5-0.6	SOIL 0.2-0.3
			6/8/2019	6/8/2019	6/8/2019	6/8/2019	6/8/2019
PARAMETER	UOM	LOR	SE196385.011	SE196385.012	SE196385.013	SE196385.014	SE196385.015
Conductivity of Extract (1:5 as received)	μS/cm	1	410	370	590	620	490
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	480	410	680	790	550
			TP71	TP72	TP72	TP73	TP73
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6
PARAMETER	UOM	LOR	6/8/2019 SE196385.016	6/8/2019 SE196385.017	6/8/2019 SE196385.018	6/8/2019 SE196385.019	6/8/2019 SE196385.020
Conductivity of Extract (1:5 as received)	μS/cm	1	630	230	270	480	530
Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	740	250	300	550	630
			TP74	TP74	TP75	TP75	TP76
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3
			6/8/2019	6/8/2019	6/8/2019	6/8/2019	7/8/2019
PARAMETER Conductivity of Extract (1:5 as received)	UOM μS/cm	LOR 1	SE196385.021	SE196385.022	SE196385.023	SE196385.024	SE196385.025
Conductivity of Extract (1.5 dry sample basis)	μS/cm	1	400 430	440 540	310 330	460 510	280 300
consecuting of Extract (the dry cample sector)	рогон	<u> </u>	430	340	330	310	300
			TP76	TP77	TP77	TP78	TP78
			SOIL 0.5-0.6	SOIL 0.2-0.3	SOIL 0.5-0.6	SOIL 0.2-0.3	SOIL 0.5-0.6
			7/8/2019	7/8/2019	7/8/2019	7/8/2019	7/8/2019
PARAMETER	UOM	LOR	SE196385.026	SE196385.027	SE196385.028	SE196385.029	SE196385.030
Conductivity of Extract (1:5 as received)	μS/cm	1	96	240	62	290	68
Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	100	280	68	320	75
			TP79	TP79	TP80	TP80	TP81
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3
PARAMETER	UOM	LOR	7/8/2019 SE196385.031	7/8/2019 SE196385.032	7/8/2019 SE196385.033	7/8/2019 SE196385.034	7/8/2019 SE196385.035
Conductivity of Extract (1:5 as received)	μS/cm	1	200	300	420	540	340
			İ	İ	İ	i	

21/08/2019 Page 6 of 14

230

μS/cm

1

Conductivity and TDS by Calculation - Soil [AN106] Tested: 20/8/2019 (continued)

Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	250	400	120	620	330
Conductivity of Extract (1:5 as received)	μS/cm	1	220	360	110	560	280
PARAMETER	UOM	LOR	SE196385.036	SE196385.037	SE196385.038	SE196385.039	SE196385.040
			0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6
			SOIL	SOIL	SOIL	SOIL	SOIL
			IFOI	1702	1702	1103	1103
			TP81	TP82	TP82	TP83	TP83

			TP84	TP84	TP85	TP85	TP86
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3
PARAMETER	UOM	LOR	SE196385.041	SE196385.042	SE196385.043	SE196385.044	SE196385.045
Conductivity of Extract (1:5 as received)	μS/cm	1	370	800	330	270	340
Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	390	990	360	300	370

			TP87	TP88	TP89	TP89	TP90
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.2-0.3	0.2-0.3	0.5-0.6	0.2-0.3
PARAMETER	UOM	LOR	SE196385.046	SE196385.047	SE196385.048	SE196385.049	SE196385.050
Conductivity of Extract (1:5 as received)	μS/cm	1	250	190	280	620	250
Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	270	190	290	730	260

			TP90	TP91	TP91	TP92	TP92
							221
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6
							7/8/2019
PARAMETER	UOM	LOR	SE196385.051	SE196385.052	SE196385.053	SE196385.054	SE196385.055
Conductivity of Extract (1:5 as received)	μS/cm	1	470	270	810	270	620
Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	540	280	970	270	780

			TP93	TP93	TP94	TP95	TP95
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.2-0.3	0.5-0.6
PARAMETER	UOM	LOR	SE196385.056	SE196385.057	SE196385.058	SE196385.059	SE196385.060
Conductivity of Extract (1:5 as received)	μS/cm	1	210	540	79	120	180
Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	220	640	84	130	210

			TP96	TP96	TP97	TP97	TP98
			2211		2211		
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3
PARAMETER	UOM	LOR	SE196385.061	SE196385.062	SE196385.063	SE196385.064	SE196385.065
Conductivity of Extract (1:5 as received)	μS/cm	1	180	220	210	200	200
Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	200	250	220	240	210

			TP98	TP99	TP99	TP100	TP100
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6
							7/8/2019
PARAMETER	UOM	LOR	SE196385.066	SE196385.067	SE196385.068	SE196385.069	SE196385.070
Conductivity of Extract (1:5 as received)	μS/cm	1	230	310	240	330	270
Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	260	370	250	370	320

21/08/2019 Page 7 of 14

Conductivity and TDS by Calculation - Soil [AN106] Tested: 20/8/2019 (continued)

			TP101	TP101	TP102	TP102	TP103
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3
			8/8/2019	8/8/2019	8/8/2019	8/8/2019	8/8/2019
PARAMETER	UOM	LOR	SE196385.071	SE196385.072	SE196385.073	SE196385.074	SE196385.075
Conductivity of Extract (1:5 as received)	μS/cm	1	57	34	32	19	250
Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	63	42	35	21	290

			TP103	TP104	TP104	TP105	TP105
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6
			8/8/2019	8/8/2019	8/8/2019	8/8/2019	8/8/2019
PARAMETER	UOM	LOR	SE196385.076	SE196385.077	SE196385.078	SE196385.079	SE196385.080
Conductivity of Extract (1:5 as received)	μS/cm	1	89	170	200	150	170
Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	98	180	230	180	200

			TP106	TP106	TP107	TP108	TP108
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.2-0.3	0.5-0.6
			8/8/2019	8/8/2019	8/8/2019	8/8/2019	8/8/2019
PARAMETER	UOM	LOR	SE196385.081	SE196385.082	SE196385.083	SE196385.084	SE196385.085
Conductivity of Extract (1:5 as received)	μS/cm	1	33	100	77	100	34
Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	38	120	84	110	39

			TP109	TP109	TP110	TP110	TP111
			2011	2011	0011	0011	0011
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3
			8/8/2019	8/8/2019	8/8/2019	8/8/2019	8/8/2019
PARAMETER	UOM	LOR	SE196385.086	SE196385.087	SE196385.088	SE196385.089	SE196385.090
Conductivity of Extract (1:5 as received)	μS/cm	1	210	210	350	78	230
Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	220	250	370	97	260

			TP111	TP112	TP112	TP113	TP113
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6
			8/8/2019	8/8/2019	8/8/2019	8/8/2019	8/8/2019
PARAMETER	UOM	LOR	SE196385.091	SE196385.092	SE196385.093	SE196385.094	SE196385.095
Conductivity of Extract (1:5 as received)	μS/cm	1	260	300	80	170	38
Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	310	320	90	190	45

			TP114	TP114	TP115	TP116	TP116
			601	2011	0011	001	0011
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.2-0.3	0.5-0.6
			8/8/2019	8/8/2019	8/8/2019	8/8/2019	8/8/2019
PARAMETER	UOM	LOR	SE196385.096	SE196385.097	SE196385.098	SE196385.099	SE196385.100
Conductivity of Extract (1:5 as received)	μS/cm	1	170	96	130	120	130
Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	190	100	140	140	130

			TP117	TP117	TP118	TP118	TP119
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3
			8/8/2019	8/8/2019	8/8/2019	8/8/2019	8/8/2019
PARAMETER	UOM	LOR	SE196385.101	SE196385.102	SE196385.103	SE196385.104	SE196385.105
Conductivity of Extract (1:5 as received)	μS/cm	1	180	220	320	310	20
Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	190	250	340	330	21

21/08/2019 Page 8 of 14

Conductivity and TDS by Calculation - Soil [AN106] Tested: 20/8/2019 (continued)

			TP119	TP120	TP120	TP121	TP121
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6
			8/8/2019	8/8/2019	8/8/2019	8/8/2019	8/8/2019
PARAMETER	UOM	LOR	SE196385.106	SE196385.107	SE196385.108	SE196385.109	SE196385.110
Conductivity of Extract (1:5 as received)	μS/cm	1	22	120	82	91	190
Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	24	130	93	98	220

			TP122	TP122	TP123	TP124	TP124
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.2-0.3	0.5-0.6
			8/8/2019	8/8/2019	8/8/2019	8/8/2019	8/8/2019
PARAMETER	UOM	LOR	SE196385.111	SE196385.112	SE196385.113	SE196385.114	SE196385.115
Conductivity of Extract (1:5 as received)	μS/cm	1	110	120	71	130	70
Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	120	130	73	140	74

			TP125	TP125
			SOIL	SOIL
			0.2-0.3	0.5-0.6
			8/8/2019	8/8/2019
PARAMETER	UOM	LOR	SE196385.116	SE196385.117
Conductivity of Extract (1:5 as received)	μS/cm	1	90	160
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	97	180

21/08/2019 Page 9 of 14

Moisture Content [AN002] Tested: 15/8/2019

			TP64	TP64	TP65	TP65	TP66
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3
			6/8/2019	6/8/2019	6/8/2019	6/8/2019	6/8/2019
PARAMETER	UOM	LOR	SE196385.001	SE196385.002	SE196385.003	SE196385.004	SE196385.005
% Moisture	%w/w	0.5	10	13	10	12	12

			TP66	TP67	TP67	TP68	TP68
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6
			6/8/2019	6/8/2019	6/8/2019	6/8/2019	6/8/2019
PARAMETER	UOM	LOR	SE196385.006	SE196385.007	SE196385.008	SE196385.009	SE196385.010
% Moisture	%w/w	0.5	20	14	14	9.3	17

			TP69	TP69	TP70	TP70	TP71
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3
			6/8/2019	6/8/2019	6/8/2019	6/8/2019	6/8/2019
PARAMETER	UOM	LOR	SE196385.011	SE196385.012	SE196385.013	SE196385.014	SE196385.015
% Moisture	%w/w	0.5	14	9.0	12	21	12

			TP71	TP72	TP72	TP73	TP73
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6
			6/8/2019	6/8/2019	6/8/2019	6/8/2019	6/8/2019
PARAMETER	UOM	LOR	SE196385.016	SE196385.017	SE196385.018	SE196385.019	SE196385.020
% Moisture	%w/w	0.5	15	8.9	11	12	16

% Moisture	%w/w	0.5	7.2	19	7.3	11	7.3
PARAMETER	UOM	LOR	SE196385.021	SE196385.022	SE196385.023	SE196385.024	SE196385.025
			6/8/2019	6/8/2019	6/8/2019	6/8/2019	
			0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			TP74	TP74	TP75	TP75	TP76

			TP76	TP77	TP77	TP78	TP78
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6
							7/8/2019
PARAMETER	UOM	LOR	SE196385.026	SE196385.027	SE196385.028	SE196385.029	SE196385.030
% Moisture	%w/w	0.5	7.6	16	9.0	7.1	10

			TP79	TP79	TP80	TP80	TP81
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3
PARAMETER	UOM	LOR	SE196385.031	SE196385.032	SE196385.033	SE196385.034	SE196385.035
% Moisture	%w/w	0.5	10	18	6.0	15	6.6

21/08/2019 Page 10 of 14

Moisture Content [AN002] Tested: 15/8/2019 (continued)

			TP81	TP82	TP82	TP83	TP83
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6
							7/8/2019
PARAMETER	UOM	LOR	SE196385.036	SE196385.037	SE196385.038	SE196385.039	SE196385.040
% Moisture	%w/w	0.5	12	10	6.1	9.3	15

			TP84	TP84	TP85	TP85	TP86
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3
PARAMETER	UOM	LOR	SE196385.041	SE196385.042	SE196385.043	SE196385.044	SE196385.045
% Moisture	%w/w	0.5	5.5	19	6.4	9.2	7.2

			TP87	TP88	TP89	TP89	TP90
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.2-0.3	0.2-0.3	0.5-0.6	0.2-0.3
							7/8/2019
PARAMETER	UOM	LOR	SE196385.046	SE196385.047	SE196385.048	SE196385.049	SE196385.050
% Moisture	%w/w	0.5	6.1	3.7	4.7	16	4.6

			TP90	TP91	TP91	TP92	TP92
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6
PARAMETER	UOM	LOR	SE196385.051	SE196385.052	SE196385.053	SE196385.054	SE196385.055
% Moisture	%w/w	0.5	13	3.9	17	3.1	19

			TP93	TP93	TP94	TP95	TP95
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.2-0.3	0.5-0.6
PARAMETER	UOM	LOR	SE196385.056	SE196385.057	SE196385.058	SE196385.059	SE196385.060
% Moisture	%w/w	0.5	5.2	16	5.4	9.7	13

			TP96	TP96	TP97	TP97	TP98
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3
							7/8/2019
PARAMETER	UOM	LOR	SE196385.061	SE196385.062	SE196385.063	SE196385.064	SE196385.065
% Moisture	%w/w	0.5	12	11	7.3	15	8.0

			TP98	TP99	TP99	TP100	TP100
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6
PARAMETER	UOM	LOR	SE196385.066	SE196385.067	SE196385.068	SE196385.069	SE196385.070
% Moisture	%w/w	0.5	11	17	6.6	12	15

21/08/2019 Page 11 of 14

Moisture Content [AN002] Tested: 15/8/2019 (continued)

			TP101	TP101	TP102	TP102	TP103
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3
			8/8/2019	8/8/2019	8/8/2019	8/8/2019	8/8/2019
PARAMETER	UOM	LOR	SE196385.071	SE196385.072	SE196385.073	SE196385.074	SE196385.075
% Moisture	%w/w	0.5	11	20	8.7	10	12

			TP103	TP104	TP104	TP105	TP105
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6
			8/8/2019	8/8/2019	8/8/2019	8/8/2019	8/8/2019
PARAMETER	UOM	LOR	SE196385.076	SE196385.077	SE196385.078	SE196385.079	SE196385.080
% Moisture	%w/w	0.5	9.4	2.5	15	15	14

			TP106	TP106	TP107	TP108	TP108
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.2-0.3	0.5-0.6
			8/8/2019	8/8/2019	8/8/2019	8/8/2019	8/8/2019
PARAMETER	UOM	LOR	SE196385.081	SE196385.082	SE196385.083	SE196385.084	SE196385.085
% Moisture	%w/w	0.5	12	16	7.8	8.4	14

			TP109	TP109	TP110	TP110	TP111
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3
			8/8/2019	8/8/2019	8/8/2019	8/8/2019	8/8/2019
PARAMETER	UOM	LOR	SE196385.086	SE196385.087	SE196385.088	SE196385.089	SE196385.090
% Moisture	%w/w	0.5	4.7	16	6.4	20	8.6

			TP111	TP112	TP112	TP113	TP113
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6
			8/8/2019	8/8/2019	8/8/2019	8/8/2019	8/8/2019
PARAMETER	UOM	LOR	SE196385.091	SE196385.092	SE196385.093	SE196385.094	SE196385.095
% Moisture	%w/w	0.5	17	7.5	11	8.4	16

			TP114	TP114	TP115	TP116	TP116
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.2-0.3	0.5-0.6
			8/8/2019	8/8/2019	8/8/2019	8/8/2019	8/8/2019
PARAMETER	UOM	LOR	SE196385.096	SE196385.097	SE196385.098	SE196385.099	SE196385.100
% Moisture	%w/w	0.5	8.0	7.6	7.3	10	3.0

			TP117	TP117	TP118	TP118	TP119
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3
			8/8/2019	8/8/2019	8/8/2019	8/8/2019	8/8/2019
PARAMETER	UOM	LOR	SE196385.101	SE196385.102	SE196385.103	SE196385.104	SE196385.105
% Moisture	%w/w	0.5	6.2	14	6.6	6.6	4.8

21/08/2019 Page 12 of 14

SE196385 R0

Moisture Content [AN002] Tested: 15/8/2019 (continued)

			TP119	TP120	TP120	TP121	TP121
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6
			8/8/2019	8/8/2019	8/8/2019	8/8/2019	8/8/2019
PARAMETER	UOM	LOR	SE196385.106	SE196385.107	SE196385.108	SE196385.109	SE196385.110
% Moisture	%w/w	0.5	7.7	8.0	12	6.9	14

			TP122	TP122	TP123	TP124	TP124
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.2-0.3	0.5-0.6
			8/8/2019	8/8/2019	8/8/2019	8/8/2019	8/8/2019
PARAMETER	UOM	LOR	SE196385.111	SE196385.112	SE196385.113	SE196385.114	SE196385.115
% Moisture	%w/w	0.5	4.5	11	2.9	7.2	5.2

			TP125	TP125
			SOIL	SOIL
			0.2-0.3	0.5-0.6
			8/8/2019	8/8/2019
PARAMETER	UOM	LOR	SE196385.116	SE196385.117
% Moisture	%w/w	0.5	7.2	11

21/08/2019 Page 13 of 14

METHOD SUMMARY

SE196385 R0

METHOD _

METHODOLOGY SUMMARY =

AN002

The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.

AN101

pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, sediments and sludges, an extract with water (or 0.01M CaCl2) is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.

AN106

Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as μ mhos/cm or μ S/cm @ 25°C. For soils, an extract with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Salinity can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. Reference APHA 2510 B.

FOOTNOTES

* NATA accreditation does not cover the performance of this service.

** Indicative data, theoretical holding time exceeded.

Not analysed.
 NVL Not validated.

IS Insufficient sample for analysis. LNR Sample listed, but not received.

UOM Unit of Measure. LOR Limit of Reporting.

↑↓

Reporting.

Raised/lowered Limit of

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: www.sgs.com.au.pv.sgsvr/en-qb/environment.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

21/08/2019 Page 14 of 14

STATEMENT OF QA/QC **PERFORMANCE**

CLIENT DETAILS LABORATORY DETAILS

Ram Ravi-Indran **Huong Crawford** Manager Contact

Geotechnique SGS Alexandria Environmental Client Laboratory Address P.O. Box 880 Address Unit 16, 33 Maddox St

NSW 2751 Alexandria NSW 2015

02 4722 2700 +61 2 8594 0400 Telephone Telephone 02 4722 6161 +61 2 8594 0499 Facsimile Facsimile

ram@geotech.com.au au.environmental.sydney@sgs.com Email Email

8599/28 Elara Boulevard, Marsden Park SE196385 R0 SGS Reference Project (Not specified) 12 Aug 2019 Order Number Date Received 21 Aug 2019 117 Date Reported

COMMENTS

Samples

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document.

This QA/QC Statement must be read in conjunction with the referenced Analytical Report.

The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Extraction Date Conductivity and TDS by Calculation - Soil 117 items

> pH in soil (1:5) 117 items

Analysis Date Conductivity and TDS by Calculation - Soil 117 items

> Moisture Content 35 items

Conductivity and TDS by Calculation - Soil Duplicate 2 items

SAMPLE SUMMARY

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia

t +61 2 8594 0400 f+61 2 8594 0499 www.sgs.com.au

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Conductivity and TDS by Calculation - Soil

Method: ME-(AU)-[ENV]AN106

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP64	SE196385.001	LB181312	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	20 Aug 2019†
TP64	SE196385.002	LB181312	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	20 Aug 2019†
TP65	SE196385.003	LB181312	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	20 Aug 2019†
TP65	SE196385.004	LB181312	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	20 Aug 2019†
TP66	SE196385.005	LB181312	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	20 Aug 2019†
TP66	SE196385.006	LB181312	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	20 Aug 2019†
TP67	SE196385.007	LB181312	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	21 Aug 2019†
TP67	SE196385.008	LB181312	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	20 Aug 2019†
TP68	SE196385.009	LB181312	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	20 Aug 2019†
TP68	SE196385.010	LB181312	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	20 Aug 2019†
TP69	SE196385.011	LB181312	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	20 Aug 2019†
TP69	SE196385.012	LB181312	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	20 Aug 2019†
TP70	SE196385.013	LB181312	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	20 Aug 2019†
TP70	SE196385.014	LB181312	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	20 Aug 2019†
TP71	SE196385.015	LB181313	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	20 Aug 2019†
TP71	SE196385.016	LB181313	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	20 Aug 2019†
TP72	SE196385.017	LB181313	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	20 Aug 2019†
TP72	SE196385.018	LB181313	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	20 Aug 2019†
TP73	SE196385.019	LB181313	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	20 Aug 2019†
TP73	SE196385.020	LB181313	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	20 Aug 2019†
TP74	SE196385.021	LB181313	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	20 Aug 2019†
TP74	SE196385.022	LB181313	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	20 Aug 2019†
TP75	SE196385.023	LB181313	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	20 Aug 2019†
TP75	SE196385.024	LB181313	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	20 Aug 2019†
TP76	SE196385.025	LB181313	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	20 Aug 2019†
TP76	SE196385.026	LB181313	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	20 Aug 2019†
TP77	SE196385.027	LB181313	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	20 Aug 2019†
TP77	SE196385.028	LB181313	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	20 Aug 2019†
TP78	SE196385.029	LB181313	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	20 Aug 2019†
TP78	SE196385.030	LB181313	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	20 Aug 2019†
TP79	SE196385.031	LB181313	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	20 Aug 2019†
TP79	SE196385.032	LB181313	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	20 Aug 2019†
TP80	SE196385.033	LB181313	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	20 Aug 2019†
TP80	SE196385.034	LB181313	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	20 Aug 2019†
TP81	SE196385.035	LB181313	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	20 Aug 2019†
TP81	SE196385.036	LB181313	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	20 Aug 2019†
TP82	SE196385.037	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	21 Aug 2019†
TP82	SE196385.038	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	21 Aug 2019†
TP83	SE196385.039	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	21 Aug 2019†
TP83	SE196385.040	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	21 Aug 2019†
TP84	SE196385.041	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	21 Aug 2019†
TP84	SE196385.042	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	21 Aug 2019†
TP85	SE196385.043	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	21 Aug 2019†
TP85	SE196385.044	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	21 Aug 2019†
TP86	SE196385.045	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	21 Aug 2019†
TP87	SE196385.046	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	21 Aug 2019†
TP88	SE196385.047	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	21 Aug 2019†
TP89	SE196385.048	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	21 Aug 2019†
TP89	SE196385.049	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	21 Aug 2019†
TP90	SE196385.050	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	21 Aug 2019†
TP90	SE196385.051	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	21 Aug 2019†
TP91	SE196385.052	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	21 Aug 2019†
TP91	SE196385.053	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	21 Aug 2019†
TP92	SE196385.054	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	21 Aug 2019†
TP92	SE196385.055	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	21 Aug 2019†
TP93	SE196385.056	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	21 Aug 2019†
TP93	SE196385.057	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	21 Aug 2019†
TP94	SE196385.058	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	21 Aug 2019†
TP95	SE196385.059	LB181316	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	21 Aug 2019†
TP95	SE196385.060	LB181316	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	21 Aug 2019†

21/8/2019 Page 2 of 14

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Conductivity and TDS by Calculation - Soil (continued)

Method: ME-(AU)-[ENV]AN106

Cample Name	Comple No	OC Pof	Campled	Dessived	Evitrantian Dua	Evites et a d	Analysis Dus	Analyses
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP96	SE196385.061	LB181316	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	21 Aug 2019†
TP96	SE196385.062	LB181316	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	21 Aug 2019†
TP97	SE196385.063	LB181316	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	21 Aug 2019†
TP97	SE196385.064	LB181316	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	21 Aug 2019†
TP98	SE196385.065	LB181316	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	21 Aug 2019†
TP98	SE196385.066	LB181316	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	21 Aug 2019†
TP99	SE196385.067	LB181316	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	21 Aug 2019†
TP99	SE196385.068	LB181316	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	21 Aug 2019†
TP100	SE196385.069	LB181316	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	21 Aug 2019†
TP100	SE196385.070	LB181316	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	14 Aug 2019	21 Aug 2019†
TP101	SE196385.071	LB181316	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP101	SE196385.072	LB181316	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP102	SE196385.073	LB181316	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP102	SE196385.074	LB181316	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP103	SE196385.075	LB181316	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP103	SE196385.076	LB181316	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP104	SE196385.077	LB181316	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP104	SE196385.078	LB181316	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP105	SE196385.079	LB181316	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP105	SE196385.080	LB181316	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP106	SE196385.081	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP106	SE196385.082	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP107	SE196385.083	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP108	SE196385.084	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP108	SE196385.085	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP109	SE196385.086	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP109	SE196385.087	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP110	SE196385.088	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP110	SE196385.089	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP111	SE196385.090	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP111	SE196385.091	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP112	SE196385.092	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP112	SE196385.093	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP113	SE196385.094	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP113	SE196385.095	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP114	SE196385.096	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP114	SE196385.097	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP115	SE196385.098	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP116	SE196385.099	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP116	SE196385.100	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP117	SE196385.101	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP117	SE196385.102	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP118	SE196385.102	LB181361	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP118	SE196385.104	LB181361	08 Aug 2019 08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP119	SE196385.104 SE196385.105	LB181361	08 Aug 2019 08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019 15 Aug 2019	21 Aug 2019†
TP119	SE196385.106	LB181361	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP120	SE196385.107	LB181361	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP120	SE196385.108	LB181361	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP121	SE196385.109	LB181361	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP121	SE196385.110	LB181361	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP122	SE196385.111	LB181361	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP122	SE196385.112	LB181361	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP123	SE196385.113	LB181361	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP124	SE196385.114	LB181361	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP124	SE196385.115	LB181361	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP125	SE196385.116	LB181361	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†
TP125	SE196385.117	LB181361	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	15 Aug 2019	21 Aug 2019†

Moisture Content

Sample Name Sample No. QC Ref

Method: ME-(AU)-[ENV]AN002

21/8/2019 Page 3 of 14

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Moisture Content (continued) Method: ME-(AU)-[ENV]AN002

1948 1948 1949	Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Tree	TP64	SE196385.001	LB181041	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
Trible	TP64	SE196385.002	LB181041	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
Trop	TP65	SE196385.003	LB181041	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
1998 1998	TP65	SE196385.004	LB181041	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
Test	TP66	SE196385.005	LB181041	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
Test	TP66	SE196385.006	LB181041	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
1988 1988	TP67	SE196385.007	LB181041	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
1988 1988	TP67	SE196385.008	LB181041	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
1989 1989	TP68	SE196385.009	LB181041	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
Tempo	TP68	SE196385.010	LB181041	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
1797 S. 194806.013	TP69	SE196385.011	LB181041	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
1777 1876	TP69	SE196385.012	LB181041	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
1777 SE 19808.015 L980402 08 Aug 2019 12 Aug 2019 15 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 1772 SE 19808.017 L980402 08 Aug 2019 12 Aug 2019 20 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 1772 SE 19808.017 L980402 08 Aug 2019 12 Aug 2019 20 Aug 2019 15 Aug 2019 20	TP70	SE196385.013	LB181041	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
1971 SE-19888 016 L9819142 OB Aug 2019 12 Aug 2019 19 Aug 2019 19 Aug 2019 20 Aug 2019 19 Aug 20	TP70	SE196385.014	LB181042	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
1772 1876	TP71	SE196385.015	LB181042	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TYP2	TP71	SE196385.016	LB181042	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
1773 1876	TP72	SE196385.017	LB181042	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
1973	TP72	SE196385.018	LB181042	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
1974 S.E. 1988.96.02 L.E. 1919.02 19. Aug.2019 12. Aug.2019 20. Aug.2019 15. Aug.2019 20. Aug.2019 20. Aug.2019 1775 S.E. 1988.86.02 L.E. 1910.02 08. Aug.2019 12. Aug.2019 20. Aug.2019 15. Aug.2019 20. Aug.2019 20. Aug.2019 1776 S.E. 1988.86.02 L.E. 1910.02 08. Aug.2019 12. Aug.2019 20. Aug.2019 15. Aug.2019 20.	TP73	SE196385.019	LB181042	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TYPA	TP73	SE196385.020	LB181042	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
1775 SE190385029	TP74	SE196385.021	LB181042	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP75	TP74	SE196385.022	LB181042	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
1976	TP75	SE196385.023	LB181042	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP76	TP75	SE196385.024	LB181042	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP77	TP76	SE196385.025	LB181042	07 Aug 2019	12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP77	TP76	SE196385.026	LB181042	07 Aug 2019	12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
1978 SE196385.029	TP77	SE196385.027	LB181042	07 Aug 2019	12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP78	TP77	SE196385.028	LB181042	07 Aug 2019	12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP79	TP78	SE196385.029	LB181042	07 Aug 2019	12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP79	TP78	SE196385.030	LB181042	07 Aug 2019	12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP60	TP79	SE196385.031	LB181042	07 Aug 2019	12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP80 SE196385.034 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 21 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 21 Aug 2019 21 Aug 2019 21 Aug 2019 21 Aug 2019 21 Aug 2019 21 Aug 2019 21 Aug 2019 21 Aug 2019 21 Aug 2019 21 Aug 2019 21 Aug 2019 21 Aug 2019 21 Aug 2019 21 Aug 2019 21 Aug 2019 21 Aug 2019 21 Aug 2019 21 Aug 2019 21 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 21 Aug 2019	TP79	SE196385.032	LB181042	07 Aug 2019	12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP81 SE198385.035 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP81 SE198385.036 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019	TP80	SE196385.033	LB181042	07 Aug 2019	12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP81 SE186885.036 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP82 SE196886.037 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019	TP80	SE196385.034	LB181043	07 Aug 2019	12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP82 SE196385.037 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP82 SE196385.038 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP83 SE196385.039 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP83 SE196385.040 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP84 SE196385.041 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP84 SE196385.042 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP85 SE196385.042 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP86 SE196385.044 LB181043 07 Aug 2019 12 Aug 2019	TP81	SE196385.035	LB181043	07 Aug 2019	12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP82 SE196385.038 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP83 SE196385.039 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP84 SE196385.040 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP84 SE196385.041 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP84 SE196385.042 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP85 SE196385.042 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP85 SE196385.044 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP86 SE196385.044 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP86 SE196385.045 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP87 SE196385.046 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP87 SE196385.046 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP88 SE196385.047 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP89 SE196385.047 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP89 SE196385.049 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP89 SE196385.040 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP90 SE196385.050 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP90 SE196385.051 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP91 SE196385.051 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP91 SE196385.051 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP91 SE196385.051 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug	TP81	SE196385.036	LB181043	07 Aug 2019	12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP88 SE196385.049 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP84 SE196385.041 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP84 SE196385.042 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP85 SE196385.042 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP86 SE196385.042 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP85 SE196385.044 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP86 SE196385.044 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP86 SE196385.045 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP87 SE196385.046 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP88 SE196385.047 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP89 SE196385.048 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP89 SE196385.049 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP89 SE196385.049 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP90 SE196385.050 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP90 SE196385.051 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP91 SE196385.052 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP91 SE196385.054 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP91 SE196385.055 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP92 SE196385.055 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP93 SE196385.056 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP93 SE196385.058 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15	TP82	SE196385.037	LB181043	07 Aug 2019	12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP83 SE196385.040 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 17 PA4 SE196385.041 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 201	TP82	SE196385.038	LB181043	07 Aug 2019	12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP84 SE196385.041 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 17 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 21 Aug 2019 21 Aug 2019 15 Aug 2019 21 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 21 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 21 Aug 2019 21 Aug 2019 21 Aug 2019 21 Aug 2019 21 Aug 2019 20	TP83	SE196385.039	LB181043	07 Aug 2019	12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP84 SE196385.042 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 21 Aug 2019 21 Aug 2019 21 Aug 2019 21 Aug 2019 21 Aug 2019 21 Aug 2019 21 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20	TP83	SE196385.040	LB181043	07 Aug 2019	12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP85 SE196385.043 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP85 SE196385.044 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP86 SE196385.045 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019	TP84	SE196385.041	LB181043	07 Aug 2019	12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP85 SE196385.044 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP86 SE196385.045 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP87 SE196385.046 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP88 SE196385.047 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 20 Aug 2019 2	TP84	SE196385.042	LB181043	07 Aug 2019	12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP86 SE196385.045 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP87 SE196385.046 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP88 SE196385.047 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP89 SE196385.048 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP89 SE196385.049 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP90 SE196385.050 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP90 SE196385.051 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP91 SE196385.052 LB181043 07 Aug 2019 12 Aug 2019	TP85	SE196385.043	LB181043	07 Aug 2019	12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP87 SE196385.046 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP88 SE196385.047 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP89 SE196385.048 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP89 SE196385.049 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP90 SE196385.050 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP90 SE196385.051 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP91 SE196385.052 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP91 SE196385.052 LB181044 07 Aug 2019 12 Aug 2019			LB181043	07 Aug 2019	12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP88 SE196385.047 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP89 SE196385.048 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP89 SE196385.049 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP90 SE196385.050 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP90 SE196385.051 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP91 SE196385.052 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP91 SE196385.052 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP91 SE196385.053 LB181043 07 Aug 2019 12 Aug 2019	TP86	SE196385.045	LB181043		12 Aug 2019			20 Aug 2019	20 Aug 2019
TP89 SE196385.048 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP89 SE196385.049 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP90 SE196385.050 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP90 SE196385.051 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP91 SE196385.052 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP91 SE196385.052 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP91 SE196385.053 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP92 SE196385.054 LB181044 07 Aug 2019 12 Aug 2019	TP87	SE196385.046	LB181043	07 Aug 2019	12 Aug 2019				20 Aug 2019
TP89 SE196385.049 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP90 SE196385.050 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP90 SE196385.051 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP91 SE196385.052 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP91 SE196385.053 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP92 SE196385.054 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP92 SE196385.055 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP93 SE196385.056 LB181044 07 Aug 2019 12 Aug 2019	TP88	SE196385.047	LB181043	07 Aug 2019	12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP90 SE196385.050 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP90 SE196385.051 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP91 SE196385.052 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP91 SE196385.053 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP92 SE196385.054 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP92 SE196385.055 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP93 SE196385.056 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP93 SE196385.057 LB181044 07 Aug 2019 12 Aug 2019	TP89	SE196385.048	LB181043	07 Aug 2019	12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP90 SE196385.051 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP91 SE196385.052 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP91 SE196385.053 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP92 SE196385.054 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP92 SE196385.055 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP93 SE196385.056 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP93 SE196385.057 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP94 SE196385.058 LB181044 07 Aug 2019 12 Aug 2019	TP89	SE196385.049	LB181043	07 Aug 2019	12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP91 SE196385.052 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP91 SE196385.053 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP92 SE196385.054 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP92 SE196385.055 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP93 SE196385.056 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP93 SE196385.057 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP94 SE196385.058 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP95 SE196385.059 LB181044 07 Aug 2019 12 Aug 2019	TP90	SE196385.050	LB181043	07 Aug 2019	12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP91 SE196385.053 LB181043 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP92 SE196385.054 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP92 SE196385.055 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP93 SE196385.056 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP93 SE196385.057 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP94 SE196385.058 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP95 SE196385.059 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019		SE196385.051			12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP92 SE196385.054 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP92 SE196385.055 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP93 SE196385.056 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP93 SE196385.057 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP94 SE196385.058 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP95 SE196385.059 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019	TP91	SE196385.052	LB181043	07 Aug 2019	12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP92 SE196385.055 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP93 SE196385.056 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP93 SE196385.057 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP94 SE196385.058 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP95 SE196385.059 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019	TP91	SE196385.053	LB181043	07 Aug 2019	12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP93 SE196385.056 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP93 SE196385.057 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP94 SE196385.058 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP95 SE196385.059 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019	TP92	SE196385.054	LB181044	07 Aug 2019	12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP93 SE196385.057 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP94 SE196385.058 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP95 SE196385.059 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019			LB181044	07 Aug 2019		21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP94 SE196385.058 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019 TP95 SE196385.059 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019	TP93	SE196385.056	LB181044	07 Aug 2019	12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP95 SE196385.059 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019	TP93	SE196385.057	LB181044		12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
	TP94	SE196385.058	LB181044	07 Aug 2019	12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP95 SE196385.060 LB181044 07 Aug 2019 12 Aug 2019 21 Aug 2019 15 Aug 2019 20 Aug 2019 20 Aug 2019	TP95	SE196385.059	LB181044	07 Aug 2019	12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
	TP95	SE196385.060	LB181044	07 Aug 2019	12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019

21/8/2019 Page 4 of 14

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Moisture Content (continued) Method: ME-(AU)-[ENV]AN002

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP96	SE196385.061	LB181044	07 Aug 2019	12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP96	SE196385.062	LB181044	07 Aug 2019	12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP97	SE196385.063	LB181044	07 Aug 2019	12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP97	SE196385.064	LB181044	07 Aug 2019	12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP98	SE196385.065	LB181044	07 Aug 2019	12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP98	SE196385.066	LB181044	07 Aug 2019	12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP99	SE196385.067	LB181044	07 Aug 2019	12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP99	SE196385.068	LB181044	07 Aug 2019	12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP100	SE196385.069	LB181044	07 Aug 2019	12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP100	SE196385.070	LB181044	07 Aug 2019	12 Aug 2019	21 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP101	SE196385.071	LB181044	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP101	SE196385.072	LB181044	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP102	SE196385.073	LB181044	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP102	SE196385.074	LB181045	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP103	SE196385.075	LB181045	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP103	SE196385.076	LB181045	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP104	SE196385.077	LB181045	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP104	SE196385.078	LB181045	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP105	SE196385.079	LB181045	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP105	SE196385.080	LB181045	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP106	SE196385.081	LB181045	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP106	SE196385.082	LB181045	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP107	SE196385.083	LB181045	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP108	SE196385.084	LB181045	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP108	SE196385.085	LB181045	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP109	SE196385.086	LB181045	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP109	SE196385.087	LB181045	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP110	SE196385.088	LB181045	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP110	SE196385.089	LB181045	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP111	SE196385.090	LB181045	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP111	SE196385.091	LB181045	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP112	SE196385.092	LB181045	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP112	SE196385.093	LB181045	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP113	SE196385.094	LB181046	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP113	SE196385.095	LB181046	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP114	SE196385.096	LB181046	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP114	SE196385.097	LB181046	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP115	SE196385.098	LB181046	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP116	SE196385.099	LB181046	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP116	SE196385.100	LB181046	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP117	SE196385.101	LB181046	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP117	SE196385.102	LB181046	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP118	SE196385.103	LB181046	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP118	SE196385.104	LB181046	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP119	SE196385.105	LB181046	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP119	SE196385.106	LB181046	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP120	SE196385.107	LB181046	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP120	SE196385.108	LB181046	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP121	SE196385.109	LB181046	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP121	SE196385.110	LB181046	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP122	SE196385.111	LB181046	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP122	SE196385.112	LB181046	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP123	SE196385.113	LB181046	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP124	SE196385.114	LB181046	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP124	SE196385.115	LB181046	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP125	SE196385.116	LB181046	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP125	SE196385.117	LB181046	08 Aug 2019	12 Aug 2019	22 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
	·		·	·				

pH in soil (1:5)

Sample Name Sample No. QC Ref

21/8/2019 Page 5 of 14

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

pH in soil (1:5) (continued)

Method: ME-(AU)-[ENV]AN101

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP64	SE196385.001	LB181312	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP64	SE196385.002	LB181312	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP65	SE196385.003	LB181312	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP65	SE196385.004	LB181312	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP66	SE196385.005	LB181312	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP66	SE196385.006	LB181312	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP67	SE196385.007	LB181312			-			
TP67	SE196385.007	LB181312	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP68	SE196385.009	LB181312	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP68			06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP69	SE196385.010 SE196385.011	LB181312 LB181312	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP69	SE196385.012	LB181312	06 Aug 2019 06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019† 20 Aug 2019†	21 Aug 2019	20 Aug 2019
	·	LB181312	-	12 Aug 2019	13 Aug 2019		21 Aug 2019	20 Aug 2019
TP70	SE196385.013		06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP70	SE196385.014	LB181312	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP71	SE196385.015	LB181313	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP71	SE196385.016	LB181313	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP72	SE196385.017	LB181313	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP72	SE196385.018	LB181313	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP73	SE196385.019	LB181313	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP73	SE196385.020	LB181313	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP74	SE196385.021	LB181313	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP74	SE196385.022	LB181313	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP75	SE196385.023	LB181313	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP75	SE196385.024	LB181313	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP76	SE196385.025	LB181313	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP76	SE196385.026	LB181313	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP77	SE196385.027	LB181313	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP77	SE196385.028	LB181313	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP78	SE196385.029	LB181313	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP78	SE196385.030	LB181313	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP79	SE196385.031	LB181313	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP79	SE196385.032	LB181313	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP80	SE196385.033	LB181313	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP80	SE196385.034	LB181313	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP81	SE196385.035	LB181313	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP81	SE196385.036	LB181313	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP82	SE196385.037	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP82	SE196385.038	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP83	SE196385.039	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP83	SE196385.040	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP84	SE196385.041	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP84	SE196385.042	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP85	SE196385.043	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP85	SE196385.044	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP86	SE196385.045	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP87	SE196385.046	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP88	SE196385.047	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP89	SE196385.048	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP89	SE196385.049	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP90	SE196385.050	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP90	SE196385.051	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP91	SE196385.052	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP91	SE196385.053	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP92	SE196385.054	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP92	SE196385.055	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP93	SE196385.056	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP93	SE196385.057	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP94	SE196385.058	LB181315	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP95	SE196385.059	LB181316	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP95	SE196385.060	LB181316	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
			<u> </u>	<u> </u>	y	J	-	

21/8/2019 Page 6 of 14

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

pH in soil (1:5) (continued) Method: ME-(AU)-[ENV]AN101

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP96	SE196385.061	LB181316	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP96	SE196385.062	LB181316	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP97	SE196385.063	LB181316	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP97	SE196385.064	LB181316	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP98	SE196385.065	LB181316	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP98	SE196385.066	LB181316	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP99	SE196385.067	LB181316	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP99	SE196385.068	LB181316	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP100	SE196385.069	LB181316	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP100	SE196385.070	LB181316	07 Aug 2019	12 Aug 2019	14 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP101	SE196385.071	LB181316	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP101	SE196385.072	LB181316	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP102	SE196385.073							
TP102	SE196385.074	LB181316	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP103	SE196385.075	LB181316	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
		LB181316	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP103	SE196385.076	LB181316	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP104	SE196385.077	LB181316	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP104	SE196385.078	LB181316	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP105	SE196385.079	LB181316	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP105	SE196385.080	LB181316	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP106	SE196385.081	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP106	SE196385.082	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP107	SE196385.083	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP108	SE196385.084	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP108	SE196385.085	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP109	SE196385.086	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP109	SE196385.087	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP110	SE196385.088	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP110	SE196385.089	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP111	SE196385.090	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP111	SE196385.091	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP112	SE196385.092	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP112	SE196385.093	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP113	SE196385.094	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP113	SE196385.095	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP114	SE196385.096	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP114	SE196385.097	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP115	SE196385.098	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP116	SE196385.099	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP116	SE196385.100	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP117	SE196385.101	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP117	SE196385.102	LB181360	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP118	SE196385.103	LB181361	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP118	SE196385.104	LB181361	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP119	SE196385.105	LB181361	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP119	SE196385.106	LB181361	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP120	SE196385.107	LB181361	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP120	SE196385.108	LB181361	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP121	SE196385.109	LB181361	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP121	SE196385.110	LB181361	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP122	SE196385.111	LB181361	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP122	SE196385.112	LB181361	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP123	SE196385.113	LB181361	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP124	SE196385.114	LB181361	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP124	SE196385.115	LB181361	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP125	SE196385.116	LB181361	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP125	SE196385.117	LB181361	08 Aug 2019	12 Aug 2019	15 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019

21/8/2019 Page 7 of 14

SURROGATES

SE196385 R0

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.

21/8/2019 Page 8 of 14

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Conductivity and TDS by Calculation - Soil

Method: ME-(AU)-[ENV]AN106

Conductivity and TDS by Calculation - C	Soil		Medi	od. ME-(AO)-[ENV]ANTO
Sample Number	Parameter	Units	LOR	Result
LB181312.001	Conductivity of Extract (1:5 as received)	μS/cm	1	<1
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	0.48
LB181313.001	Conductivity of Extract (1:5 as received)	μS/cm	1	<1
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	0
LB181315.001	Conductivity of Extract (1:5 as received)	μS/cm	1	<1
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	0
LB181316.001	Conductivity of Extract (1:5 as received)	μS/cm	1	<1
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	0.54
LB181360.001	Conductivity of Extract (1:5 as received)	μS/cm	1	<1
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	0.1
LB181361.001	Conductivity of Extract (1:5 as received)	μS/cm	1	<1
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	0

21/8/2019 Page 9 of 14

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Conductivity and TDS by Calculation - Soil

Method: ME-(AU)-[ENV]AN106

Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
LB181312.014	Conductivity of Extract (1:5 as received)	μS/cm	1	210	190	31	8
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	240	21.851952461	31	8
LB181312.025	Conductivity of Extract (1:5 as received)	μS/cm	1	370	320	31	15
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	410	53.374689564	31	15
LB181313.033	Conductivity of Extract (1:5 as received)	μS/cm	1	420	423.5	30	0
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	450	50.388888888	30	0
LB181315.032	Conductivity of Extract (1:5 as received)	μS/cm	1	330	349.94	31	4
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	360	73.929925484	31	4
LB181315.033	Conductivity of Extract (1:5 as received)	μS/cm	1	810	724.75	30	11
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	970	74.846153846	30	11
LB181316.032	Conductivity of Extract (1:5 as received)	μS/cm	1	210	204.3	31	1
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	220	20.330839416	31	1
LB181316.033	Conductivity of Extract (1:5 as received)	μS/cm	1	32	33.4	36	3
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	35	36.5786931818	36	3
LB181360.032	Conductivity of Extract (1:5 as received)	μS/cm	1	77	129.7	32	50 ②
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	84	40.663180515	32	50 ②
LB181360.033	Conductivity of Extract (1:5 as received)	μS/cm	1	80	62.88	33	24
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	90	70.9547540983	32	24
LB181361.021	Conductivity of Extract (1:5 as received)	μS/cm	1	71	63.5	33	11
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	73	35.3707037643	33	11
LB181361.020	Conductivity of Extract (1:5 as received)	μS/cm	1	160	150	31	6
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	180	66.700150375	31	6
	LB181312.014 LB181312.025 LB181313.033 LB181315.032 LB181316.032 LB181316.032 LB181360.032 LB181360.032 LB181360.032	LB181312.014 Conductivity of Extract (1:5 as received) Conductivity of Extract (1:5 dry sample basis) LB181312.025 Conductivity of Extract (1:5 dry sample basis) LB181313.033 Conductivity of Extract (1:5 dry sample basis) LB181315.032 Conductivity of Extract (1:5 dry sample basis) LB181315.033 Conductivity of Extract (1:5 dry sample basis) LB181315.033 Conductivity of Extract (1:5 dry sample basis) LB181316.033 Conductivity of Extract (1:5 dry sample basis) LB181316.032 Conductivity of Extract (1:5 dry sample basis) LB181316.033 Conductivity of Extract (1:5 dry sample basis) Conductivity of Extract (1:5 dry sample basis) Conductivity of Extract (1:5 dry sample basis) Conductivity of Extract (1:5 dry sample basis) Conductivity of Extract (1:5 dry sample basis) Conductivity of Extract (1:5 dry sample basis) Conductivity of Extract (1:5 dry sample basis) Conductivity of Extract (1:5 dry sample basis) Conductivity of Extract (1:5 dry sample basis) Conductivity of Extract (1:5 dry sample basis) Conductivity of Extract (1:5 dry sample basis) Conductivity of Extract (1:5 dry sample basis) Conductivity of Extract (1:5 dry sample basis) Conductivity of Extract (1:5 dry sample basis) Conductivity of Extract (1:5 dry sample basis) Conductivity of Extract (1:5 dry sample basis) Conductivity of Extract (1:5 dry sample basis) Conductivity of Extract (1:5 dry sample basis) Conductivity of Extract (1:5 dry sample basis)	LB181312.014 Conductivity of Extract (1:5 as received) μS/cm LB181312.025 Conductivity of Extract (1:5 dry sample basis) μS/cm LB181313.033 Conductivity of Extract (1:5 dry sample basis) μS/cm LB181315.032 Conductivity of Extract (1:5 dry sample basis) μS/cm LB181315.033 Conductivity of Extract (1:5 dry sample basis) μS/cm LB181315.033 Conductivity of Extract (1:5 dry sample basis) μS/cm LB181316.033 Conductivity of Extract (1:5 dry sample basis) μS/cm LB181316.032 Conductivity of Extract (1:5 dry sample basis) μS/cm LB181316.033 Conductivity of Extract (1:5 dry sample basis) μS/cm LB181316.033 Conductivity of Extract (1:5 dry sample basis) μS/cm LB181360.033 Conductivity of Extract (1:5 dry sample basis) μS/cm LB181360.033 Conductivity of Extract (1:5 dry sample basis) μS/cm LB181361.021 Conductivity of Extract (1:5 dry sample basis) μS/cm LB181361.020 Conductivity of Extract (1:5 dry sample basis) μS/cm	LB181312.014 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 LB181312.025 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 LB181313.033 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 LB181315.032 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 LB181315.032 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 LB181315.033 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 LB181316.033 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 LB181316.032 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 LB181316.033 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 LB181316.033 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 LB181360.032 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 LB181360.033 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 LB181360.033 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 LB18136	LB181312.014 Conductivity of Extract (1:5 as received) μS/cm 1 210 LB181312.025 Conductivity of Extract (1:5 ary sample basis) μS/cm 1 370 LB181312.025 Conductivity of Extract (1:5 as received) μS/cm 1 410 LB181313.033 Conductivity of Extract (1:5 as received) μS/cm 1 420 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 450 LB181315.032 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 330 LB181315.033 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 360 LB181316.033 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 970 LB181316.032 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 220 LB181316.033 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 32 LB181316.033 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 35 LB181360.032 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 <	LB181312.014 Conductivity of Extract (1:5 as received) μS/cm 1 210 190 LB181312.025 Conductivity of Extract (1:5 as received) μS/cm 1 370 320 LB181312.025 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 410 53.3746895644 LB181313.033 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 420 423.5 LB181315.032 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 450 50.388888888 LB181315.032 Conductivity of Extract (1:5 as received) μS/cm 1 360 73.929925484 LB181315.033 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 810 724.75 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 970 74.846153846 LB181316.032 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 220 20.330839416 LB181316.033 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 32 33.4 LB181360.032 Conductivity of	LB181312.014 Conductivity of Extract (1:5 as received)

Moisture Content

Method: ME-(AU)-[ENV]AN002

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE196385.002	LB181041.011	% Moisture	%w/w	0.5	13	12	38	5
SE196385.012	LB181041.022	% Moisture	%w/w	0.5	9.0	8.5	41	6
SE196385.013	LB181041.024	% Moisture	%w/w	0.5	12	15	37	17
SE196385.023	LB181042.011	% Moisture	%w/w	0.5	7.3	9.0	42	22
SE196385.033	LB181042.022	% Moisture	%w/w	0.5	6.0	3.7	51	47
SE196385.043	LB181043.011	% Moisture	%w/w	0.5	6.4	5.6	47	13
SE196385.053	LB181043.022	% Moisture	%w/w	0.5	17	16	36	5
SE196385.063	LB181044.011	% Moisture	%w/w	0.5	7.3	7.9	43	9
SE196385.083	LB181045.011	% Moisture	%w/w	0.5	7.8	8.0	43	3
SE196385.093	LB181045.022	% Moisture	%w/w	0.5	11	11	39	2
SE196385.113	LB181046.022	% Moisture	%w/w	0.5	2.9	4.0	59	32
SE196385.117	LB181046.027	% Moisture	%w/w	0.5	11	8.7	40	22

pH in soil (1:5)

Method: ME-(AU)-[ENV]AN101

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE196385.002	LB181312.014	pH	pH Units	0.1	5.4	5.3	32	3
SE196385.012	LB181312.025	pH	pH Units	0.1	5.4	5.3	32	1
SE196385.023	LB181313.032	pH	pH Units	0.1	5.6	5.754	32	3
SE196385.033	LB181313.033	pH	pH Units	0.1	8.6	8.494	31	1
SE196385.043	LB181315.032	pH	pH Units	0.1	7.5	7.668	31	2
SE196385.053	LB181315.033	pH	pH Units	0.1	5.2	5.107	32	2
SE196385.063	LB181316.032	pH	pH Units	0.1	5.3	5.399	32	2
SE196385.073	LB181316.033	pH	pH Units	0.1	5.4	5.417	32	0
SE196385.083	LB181360.032	рН	pH Units	0.1	5.7	5.534	32	3
SE196385.093	LB181360.033	pH	pH Units	0.1	5.1	5.408	32	6
SE196385.113	LB181361.021	рН	pH Units	0.1	5.7	5.629	32	1
SE196385.117	LB181361.020	рН	pH Units	0.1	5.4	5.4	32	1

21/8/2019 Page 10 of 14

LABORATORY CONTROL SAMPLES

SE196385 R0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Conductivity and TDS by Calculation - Soil

Method: ME-(AU)-[ENV]AN106

						•	-,
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB181312.002	Conductivity of Extract (1:5 as received)	μS/cm	1	290	303	85 - 115	96
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	NA	303	85 - 115	96
LB181313.002	Conductivity of Extract (1:5 as received)	μS/cm	1	290	303	85 - 115	95
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	NA	303	85 - 115	95
LB181315.002	Conductivity of Extract (1:5 as received)	μS/cm	1	290	303	85 - 115	95
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	NA	303	85 - 115	95
LB181316.002	Conductivity of Extract (1:5 as received)	μS/cm	1	290	303	85 - 115	95
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	NA	303	85 - 115	95
LB181360.002	Conductivity of Extract (1:5 as received)	μS/cm	1	280	303	85 - 115	93
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	NA	303	85 - 115	93
LB181361.002	Conductivity of Extract (1:5 as received)	μS/cm	1	270	303	85 - 115	91
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	NA	303	85 - 115	91

pH in soil (1:5)

Method: ME-(AU)-[ENV]AN101

pri iii ooii (1.0)						noutout the pr	o) [E.H.) atto.
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB181312.003	pH	pH Units	0.1	7.4	7.415	98 - 102	100
LB181313.003	pH	pH Units	0.1	7.4	7.415	98 - 102	100
LB181315.003	pH	pH Units	0.1	7.4	7.415	98 - 102	100
LB181316.003	pH	pH Units	0.1	7.4	7.415	98 - 102	99
LB181360.003	рН	pH Units	0.1	7.4	7.415	98 - 102	100
LB181361.003	pH	pH Units	0.1	7.4	7.415	98 - 102	100

21/8/2019 Page 11 of 14

MATRIX SPIKES

SE196385 R0

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spikes were required for this job.

21/8/2019 Page 12 of 14

MATRIX SPIKE DUPLICATES

SE196385 R0

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

21/8/2019 Page 13 of 14

FOOTNOTES

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
 QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- 2 RPD failed acceptance criteria due to sample heterogeneity.
- 3 Results less than 5 times LOR preclude acceptance criteria for RPD.
- Recovery failed acceptance criteria due to matrix interference.
- ® Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- © LOR was raised due to sample matrix interference.
- ① LOR was raised due to dilution of significantly high concentration of analyte in sample.
- ® Reanalysis of sample in duplicate confirmed sample heterogeneity and inconsistency of results.
- Recovery failed acceptance criteria due to sample heterogeneity.
- © LOR was raised due to high conductivity of the sample (required dilution).
- † Refer to Analytical Report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

21/8/2019 Page 14 of 14

GEOTECHNIQUE PTY LTD

SGS ENVIRONMENTAL SERVICES

Laboratory Test Request / Chain of Custody Record

Tel: (02) 4722 2700

Lemko Place PENRITH NSW 2750

P O Box 880 PENRITH NSW 2751

Fax: (02) 4722 6161 email: info@geotech.com.au Sampling Date:

Sampled By:

Page

of

Job No: Project:

8599/28

Lot Classification

PH:

8594 0400

33 MADDOX STREET

ALEXANDRIA NSW

UNIT 16

FAX: 8594 0499

Project Manager:

RR

RR & NK

02/08/2019-09/08/2019

Location:

Elara Boulevard, Marsden Park

ATTN: Ms Emily Yin

Sampling d	etails	Samp	le type						
Location	Depth	Soil	Water				Results re	equired by:	
	(m)								
				EC (1:5)	рН	Sulphate	Chloride	ESP	KEEP SAMPLE
TP64	0.2-0.3	DSP		✓	✓				YES
2	0.5-0.6	DSP		✓	✓				YES
3 TP65	0.2-0.3	DSP		✓	✓				YES
4	0.5-0.6	DSP		✓	✓				YES
S TP66	0.2-0.3	DSP		✓	✓				YES
6	0.5-0.6	DSP		✓	✓				YES
7 TP67	0.2-0.3	DSP		√	✓		1	· · · · · · · · · · · · · · · · ·	YES
8	0.5-0.6	DSP		✓	✓		SGS EHS Ale	xandria Laboratory	YES
7 TP68	0.2-0.3	DSP		V	✓				YES
0	0.5-0.6	DSP		✓	✓				YES
TP69	0.2-0.3	DSP		√	✓				YES
12	0.5-0.6	DSP		✓	✓		SE19638	85 Ր ՈՐ	YES
3 TP70	0.2-0.3	DSP		✓	✓				YES
14	0.5-0.6	DSP		✓	✓		Received: 12	-Aug-2019	YES
5 TP71	0.2-0.3	DSP		/	✓		1		YES
6	0.5-0.6	DSP		✓	✓				YES
TP72	0.2-0.3	DSP		V	✓				YES
18	0.5-0.6	DSP		✓	✓				YES
9 TP73	0.2-0.3	DSP		✓	✓				YES
20	0.5-0.6	DSP		✓	✓				YES
21 TP74	0.2-0.3	DSP		✓	✓				YES
22	0.5-0.6	DSP		✓	✓				YES
23 TP75	0.2-0.3	DSP		✓	√				YES
24	0.5-0.6	DSP		✓	✓				YES
5 Form 64.7F3-10 SGS	0.2-0.3	DSP		✓	✓				YES

_	26	0.5-0.6	DSP				 	7	T	1 1	
	7 27	0.2-0.3	DSP	·	V V	-	 				YES
11-7	28	0.5-0.6	DSP		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				-		YES
TD7	8 29	0.2-0.3	DSP		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			-			YES
1177	30	0.5-0.6	DSP		V						YES
TD7	9 31	0.2-0.3	DSP		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						YES
1177					V V		 -				YES
TDO	32	0.5-0.6	DSP		V V						YES
1700		0.2-0.3	DSP		· ·						YES
TP8	34	0.5-0.6	DSP								YES
IFO	1 35	0.2-0.3	DSP		✓ ✓		 				YES
TD0	2 37	0.5-0.6	DSP	✓	V V						YES
1102	38	0.2-0.3	DSP		V V						YES
TP83		0.5-0.6	DSP								YES
1783	3 39	0.2-0.3	DSP	V	V						YES
TP84		0.5-0.6	DSP	V	V						YES
11782		0.2-0.3	DSP	✓	V						YES
TDO	42	0.5-0.6	DSP	/	V						YES
TP85		0.2-0.3	DSP	✓	V						YES
TDO	44	0.5-0.6	DSP	✓	V						YES
TP86		0.2-0.3	DSP	V	V						YES
TDO		0.5-0.6	DSP	✓	✓						YES
TP87	- , 0	0.2-0.3	DSP	✓	√						YES
TDOO	•	0.5-0.6	DSP	V	✓						YES
TP88		0.2-0.3	DSP	/	√						YES
TDOO	•	0.5-0.6	DSP	V	√						YES
TP89	48	0.2-0.3	DSP	V	✓						YES
TDOO	49	0.5-0.6	DSP	V	√						YES
TP90	50	0.2-0.3	DSP	✓	√						YES
TDO4	51	0.5-0.6	DSP	✓	√						YES
TP91	52	0.2-0.3	DSP	✓	√						YES
TDOO	53	0.5-0.6	DSP	√	√						YES
TP92	54	0.2-0.3	DSP	✓	✓						YES
TD00	55	0.5-0.6	DSP	✓	✓						YES
TP93	56	0.2-0.3	DSP	✓	✓						YES
	57	0.5-0.6	DSP	✓	✓						YES
TP94	58	0.2-0.3	DSP	✓	✓						YES
TD0-	•	0.5-0.6	DSP	✓	✓						YES
TP95	59	0.2-0.3	DSP	✓	✓						YES
TDOO	60	0.5-0.6	DSP	/	/						YES
TP96	61	0.2-0.3	DSP	√	✓						YES
	62	0.5-0.6	DSP	✓	✓						YES
TP97	63	0.2-0.3	DSP	✓	✓						YES
	64	0.5-0.6	DSP	√	✓						YES
TP98	65	0.2-0.3	DSP	✓	✓						YES
Form No	4 7E3-10 SG	s 0.5-0.6	DSP	✓	✓						YES

TP99	67	0.2-0.3	DSP		✓	T	T	Τ	1	1	1 1		YES
	68	0.5-0.6	DSP	→	✓					—			YES
TP100	69	0.2-0.3	DSP	✓	✓					1			YES
	70	0.5-0.6	DSP	✓	✓					 			YES
TP101	71	0.2-0.3	DSP	✓	✓								YES
	72	0.5-0.6	DSP	✓	√								YES
TP102	73	0.2-0.3	DSP	✓	√								YES
	74	0.5-0.6	DSP	✓	✓								YES
TP103	75	0.2-0.3	DSP	✓	V								YES
	76	0.5-0.6	DSP	✓	✓								YES
TP104	77	0.2-0.3	DSP	✓	✓								YES
	78	0.5-0.6	DSP	✓	✓								YES
TP105	79	0.2-0.3	DSP	✓	✓								YES
	89	0.5-0.6	DSP	✓	√								YES
TP106	81	0.2-0.3	DSP	✓	√								YES
	22	0.5-0.6	DSP	✓	√								YES
TP107	83	0.2-0.3	DSP	✓	√								YES
		0.5-0.6	DSP	✓	√								YES
TP108	84	0.2-0.3	DSP	✓	√								YES
	85	0.5-0.6	DSP	✓	√								YES
TP109	86	0.2-0.3	DSP	✓	√								YES
	87	0.5-0.6	DSP	✓	√								YES
TP110	88	0.2-0.3	DSP	✓	√								YES
	89	0.5-0.6	DSP	✓	√								YES
TP111	90	0.2-0.3	DSP	✓	√								YES
	91	0.5-0.6	DSP	✓	✓.							and the same of th	YES
TP112	92	0.2-0.3	DSP	√	V								YES
	93	0.5-0.6	DSP	✓	✓								YES
TP113	94	0.2-0.3	DSP	✓	√								YES
	95	0.5-0.6	DSP	✓	√								YES
TP114	96	0.2-0.3	DSP	/	√								YES
TD//-	97	0.5-0.6	DSP	✓	√								YES
TP115	98	0.2-0.3	DSP	✓	√								YES
TD440	•	0.5-0.6	DSP	√	√								YES
TP116	99	0.2-0.3	DSP	V	✓								YES
TD447	100	0.5-0.6	DSP	✓									YES
TP117	101	0.2-0.3	DSP										YES
TP118	102	0.5-0.6	DSP DSP										YES
17110	103	0.2-0.3 0.5-0.6	DSP	→	→								YES YES
TP119	104	0.5-0.6	DSP		→								YES
11 118	106	0.5-0.6	DSP		→								YES
TP120	107	0.2-0.3	DSP										YES
11 120	108	0.5-0.6	DSP										YES
TP121			DSP	· ·	· ·						-		YES
II IZ I For	m No 4.7F3-10 SG	S 0.2-0.3] DOF [•								IES

WP	Water sample	, plastic bottle	DSG Dis	turbed soil sample (gla	✓	Test required		# Ged			
WG				Disturbed soil sample (small plastic bag)	* Purge	& Trap [@] mole	H ⁺ /tonne		
	Raja		NK	9/08/2019		J.L		J.L		12/8/19	2pm
	Name		Signatur	e Date		Name		Signature		Date	
		Relinquish	ed by				R	eceived by			
	1.7										
	117	0.5-0.6	DSP	✓	✓						YES
TP125	116	0.2-0.3	DSP	✓	V						YES
	115	0.5-0.6	DSP	✓	✓						YES
TP124	114	0.2-0.3	DSP	✓	✓						YES
	•	0.5-0.6	DSP	✓	✓						YES
TP123	113	0.2-0.3	DSP	✓	✓						YES
	112	0.5-0.6	DSP	✓	✓						YES
TP122	111	0.2-0.3	DSP	✓	✓						YES
	16	0.5-0.6	DSP	· ·	V						YES

CLIENT DETAILS

LABORATORY DETAILS

Contact Ram Ravi-Indran

Client Geotechnique
Address P.O. Box 880

NSW 2751

Manager Huong Crawford

Laboratory SGS Alexandria Environmental

Address Unit 16, 33 Maddox St

Alexandria NSW 2015

Telephone 02 4722 2700 Telephone +61 2 8594 0400

Facsimile 02 4722 6161 Facsimile +61 2 8594 0499

Email ram@geotech.com.au Email au.environmental.sydney@sgs.com

Project8599/28 Elara Boulevard, Marsden ParkSamples ReceivedMon 12/8/2019Order Number(Not specified)Report DueWed 21/8/2019Samples117SGS ReferenceSE196385

Standard

SUBMISSION DETAILS

This is to confirm that 117 samples were received on Monday 12/8/2019. Results are expected to be ready by COB Wednesday 21/8/2019. Please quote SGS reference SE196385 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled Complete documentation received Yes Yes Sample container provider Client Sample cooling method None Samples received in correct containers Sample counts by matrix 117 Soil Yes 09/08/19 @ 03:48pm Date documentation received Type of documentation received COC Samples received in good order Yes Samples received without headspace N/A Sample temperature upon receipt 16.8°C Sufficient sample for analysis Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

Samples with "red dots" not received.

Turnaround time requested

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

CLIENT DETAILS -Client Geotechnique Project 8599/28 Elara Boulevard, Marsden Park

- SUMMARY OF ANALYSIS

No.	Sample ID	Conductivity and TDS by Calculation - Soil	Moisture Content	pH in soil (1:5)
001	TP64 0.2-0.3	2	1	1
002	TP64 0.5-0.6	2	1	1
003	TP65 0.2-0.3	2	1	1
004	TP65 0.5-0.6	2	1	1
005	TP66 0.2-0.3	2	1	1
006	TP66 0.5-0.6	2	1	1
007	TP67 0.2-0.3	2	1	1
800	TP67 0.5-0.6	2	1	1
009	TP68 0.2-0.3	2	1	1
010	TP68 0.5-0.6	2	1	1
011	TP69 0.2-0.3	2	1	1
012	TP69 0.5-0.6	2	1	1
013	TP70 0.2-0.3	2	1	1
014	TP70 0.5-0.6	2	1	1
015	TP71 0.2-0.3	2	1	1
016	TP71 0.5-0.6	2	1	1
017	TP72 0.2-0.3	2	1	1
018	TP72 0.5-0.6	2	1	1
019	TP73 0.2-0.3	2	1	1
020	TP73 0.5-0.6	2	1	1
021	TP74 0.2-0.3	2	1	1
022	TP74 0.5-0.6	2	1	1
023	TP75 0.2-0.3	2	1	1
024	TP75 0.5-0.6	2	1	1

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS -

Client Geotechnique

Project 8599/28 Elara Boulevard, Marsden Park

- SUMMARY OF ANALYSIS

No.	Sample ID	Conductivity and TDS by Calculation - Soil	Moisture Content	pH in soil (1:5)
025	TP76 0.2-0.3	2	1	1
026	TP76 0.5-0.6	2	1	1
027	TP77 0.2-0.3	2	1	1
028	TP77 0.5-0.6	2	1	1
029	TP78 0.2-0.3	2	1	1
030	TP78 0.5-0.6	2	1	1
031	TP79 0.2-0.3	2	1	1
032	TP79 0.5-0.6	2	1	1
033	TP80 0.2-0.3	2	1	1
034	TP80 0.5-0.6	2	1	1
035	TP81 0.2-0.3	2	1	1
036	TP81 0.5-0.6	2	1	1
037	TP82 0.2-0.3	2	1	1
038	TP82 0.5-0.6	2	1	1
039	TP83 0.2-0.3	2	1	1
040	TP83 0.5-0.6	2	1	1
041	TP84 0.2-0.3	2	1	1
042	TP84 0.5-0.6	2	1	1
043	TP85 0.2-0.3	2	1	1
044	TP85 0.5-0.6	2	1	1
045	TP86 0.2-0.3	2	1	1
046	TP87 0.2-0.3	2	1	1
047	TP88 0.2-0.3	2	1	1
048	TP89 0.2-0.3	2	1	1

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS -Client Geotechnique Project 8599/28 Elara Boulevard, Marsden Park

- SUMMARY OF ANALYSIS

No.	Sample ID	Conductivity and TDS by Calculation - Soil	Moisture Content	pH in soil (1:5)
049	TP89 0.5-0.6	2	1	1
050	TP90 0.2-0.3	2	1	1
051	TP90 0.5-0.6	2	1	1
052	TP91 0.2-0.3	2	1	1
053	TP91 0.5-0.6	2	1	1
054	TP92 0.2-0.3	2	1	1
055	TP92 0.5-0.6	2	1	1
056	TP93 0.2-0.3	2	1	1
057	TP93 0.5-0.6	2	1	1
058	TP94 0.2-0.3	2	1	1
059	TP95 0.2-0.3	2	1	1
060	TP95 0.5-0.6	2	1	1
061	TP96 0.2-0.3	2	1	1
062	TP96 0.5-0.6	2	1	1
063	TP97 0.2-0.3	2	1	1
064	TP97 0.5-0.6	2	1	1
065	TP98 0.2-0.3	2	1	1
066	TP98 0.5-0.6	2	1	1
067	TP99 0.2-0.3	2	1	1
068	TP99 0.5-0.6	2	1	1
069	TP100 0.2-0.3	2	1	1
070	TP100 0.5-0.6	2	1	1
071	TP101 0.2-0.3	2	1	1
072	TP101 0.5-0.6	2	1	1

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

14/08/2019 Page 4 of 6

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS -

Client Geotechnique

Project 8599/28 Elara Boulevard, Marsden Park

- SUMMARY OF ANALYSIS

			I	
No.	Sample ID	Conductivity and TDS by Calculation - Soil	Moisture Content	pH in soil (1:5)
073	TP102 0.2-0.3	2	1	1
074	TP102 0.5-0.6	2	1	1
075	TP103 0.2-0.3	2	1	1
076	TP103 0.5-0.6	2	1	1
077	TP104 0.2-0.3	2	1	1
078	TP104 0.5-0.6	2	1	1
079	TP105 0.2-0.3	2	1	1
080	TP105 0.5-0.6	2	1	1
081	TP106 0.2-0.3	2	1	1
082	TP106 0.5-0.6	2	1	1
083	TP107 0.2-0.3	2	1	1
084	TP108 0.2-0.3	2	1	1
085	TP108 0.5-0.6	2	1	1
086	TP109 0.2-0.3	2	1	1
087	TP109 0.5-0.6	2	1	1
088	TP110 0.2-0.3	2	1	1
089	TP110 0.5-0.6	2	1	1
090	TP111 0.2-0.3	2	1	1
091	TP111 0.5-0.6	2	1	1
092	TP112 0.2-0.3	2	1	1
093	TP112 0.5-0.6	2	1	1
094	TP113 0.2-0.3	2	1	1
095	TP113 0.5-0.6	2	1	1
096	TP114 0.2-0.3	2	1	1

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

14/08/2019 Page 5 of 6

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS -

Client Geotechnique

Project 8599/28 Elara Boulevard, Marsden Park

- SUMMARY OF ANALYSIS

No.	Sample ID	Conductivity and TDS by Calculation - Soil	Moisture Content	pH in soil (1:5)
097	TP114 0.5-0.6	2	1	1
098	TP115 0.2-0.3	2	1	1
099	TP116 0.2-0.3	2	1	1
100	TP116 0.5-0.6	2	1	1
101	TP117 0.2-0.3	2	1	1
102	TP117 0.5-0.6	2	1	1
103	TP118 0.2-0.3	2	1	1
104	TP118 0.5-0.6	2	1	1
105	TP119 0.2-0.3	2	1	1
106	TP119 0.5-0.6	2	1	1
107	TP120 0.2-0.3	2	1	1
108	TP120 0.5-0.6	2	1	1
109	TP121 0.2-0.3	2	1	1
110	TP121 0.5-0.6	2	1	1
111	TP122 0.2-0.3	2	1	1
112	TP122 0.5-0.6	2	1	1
113	TP123 0.2-0.3	2	1	1
114	TP124 0.2-0.3	2	1	1
115	TP124 0.5-0.6	2	1	1
116	TP125 0.2-0.3	2	1	1
117	TP125 0.5-0.6	2	1	1

14/08/2019 Page 6 of 6

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

ANALYTICAL REPORT

CLIENT DETAILS -

LABORATORY DETAILS

Ram Ravi-Indran Contact Geotechnique Client

Address P.O. Box 880 NSW 2751

Huong Crawford Manager SGS Alexandria Environmental Laboratory

Address Unit 16, 33 Maddox St Alexandria NSW 2015

02 4722 2700 Telephone Facsimile 02 4722 6161

ram@geotech.com.au

8599-28 Elara Boulevard, Marsden Park Project Order Number (Not specified)

125 Samples

+61 2 8594 0400 Telephone Facsimile +61 2 8594 0499

Email au.environmental.sydney@sgs.com

SGS Reference SE196386 R0 12/8/2019 Date Received 21/8/2019 Date Reported

COMMENTS

Email

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Dong Liang

Metals/Inorganics Team Leader

Shane McDermott

Inorganic/Metals Chemist

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia

t +61 2 8594 0400 f +61 2 8594 0499 www.sgs.com.au

pH in soil (1:5) [AN101] Tested: 16/8/2019

			TP1	TP1	TP2	TP4	TP4
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.7-0.8	0.2-0.3	0.2-0.3	0.7-0.8
				2/8/2019	2/8/2019		2/8/2019
PARAMETER	UOM	LOR	SE196386.001	SE196386.002	SE196386.003	SE196386.007	SE196386.008
рН	pH Units	0.1	6.4	7.1	5.8	4.8	4.7

			TP5	TP6	TP6	TP7	TP7
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.2-0.3	0.7-0.8	0.2-0.3	0.7-0.8
				2/8/2019	2/8/2019		
PARAMETER	UOM	LOR	SE196386.009	SE196386.011	SE196386.012	SE196386.013	SE196386.014
pH	pH Units	0.1	5.6	5.6	4.6	4.8	4.6

			TP8	TP8	TP9	TP9	TP10
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.7-0.8	0.2-0.3	0.7-0.8	0.2-0.3
				2/8/2019	2/8/2019		2/8/2019
PARAMETER	UOM	LOR	SE196386.015	SE196386.016	SE196386.017	SE196386.018	SE196386.019
рН	pH Units	0.1	5.2	5.4	6.3	5.1	5.0

			TP10	TP11	TP11	TP12	TP12
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.7-0.8	0.2-0.3	0.7-0.8	0.2-0.3	0.7-0.8
				2/8/2019	2/8/2019		2/8/2019
PARAMETER	UOM	LOR	SE196386.020	SE196386.021	SE196386.022	SE196386.023	SE196386.024
pH	pH Units	0.1	6.1	5.5	5.6	5.6	5.1

			TP13	TP13	TP14	TP14	TP15
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.7-0.8	0.2-0.3	0.7-0.8	0.2-0.3
				2/8/2019	2/8/2019		2/8/2019
PARAMETER	UOM	LOR	SE196386.025	SE196386.026	SE196386.027	SE196386.028	SE196386.029
pH	pH Units	0.1	4.9	5.2	4.9	5.1	4.9

			TP15	TP16	TP16	TP17	TP17
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.7-0.8	0.2-0.3	0.7-0.8	0.2-0.3	0.7-0.8
				2/8/2019	2/8/2019		2/8/2019
PARAMETER	UOM	LOR	SE196386.030	SE196386.031	SE196386.032	SE196386.033	SE196386.034
рН	pH Units	0.1	5.0	5.2	5.2	5.0	5.9

			TP18	TP18	TP19	TP19	TP20
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.7-0.8	0.2-0.3	0.7-0.8	0.2-0.3
				2/8/2019	2/8/2019		
PARAMETER	UOM	LOR	SE196386.035	SE196386.036	SE196386.037	SE196386.038	SE196386.039
pH	pH Units	0.1	5.3	5.2	4.7	4.9	4.9

21/08/2019 Page 2 of 14

pH in soil (1:5) [AN101] Tested: 16/8/2019 (continued)

			TP20	TP21	TP21	TP22	TP22
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.7-0.8	0.2-0.3	0.7-0.8	0.2-0.3	0.7-0.8
				2/8/2019	2/8/2019		2/8/2019
PARAMETER	UOM	LOR	SE196386.040	SE196386.041	SE196386.042	SE196386.043	SE196386.044
pH	pH Units	0.1	4.7	4.6	5.0	5.0	4.8

			TP23	TP23	TP24	TP24	TP25
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.7-0.8	0.2-0.3	0.7-0.8	0.2-0.3
				2/8/2019	2/8/2019		2/8/2019
PARAMETER	UOM	LOR	SE196386.045	SE196386.046	SE196386.047	SE196386.048	SE196386.049
рН	pH Units	0.1	5.0	5.0	5.5	5.2	5.0

			TP25	TP26	TP26	TP27	TP27
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.7-0.8	0.2-0.3	0.7-0.8	0.2-0.3	0.7-0.8
				5/8/2019	5/8/2019	5/8/2019	5/8/2019
PARAMETER	UOM	LOR	SE196386.050	SE196386.051	SE196386.052	SE196386.053	SE196386.054
рН	pH Units	0.1	5.2	5.3	5.6	5.8	5.2

			TP28	TP28	TP29	TP29	TP30
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.7-0.8	0.2-0.3	0.7-0.8	0.2-0.3
			5/8/2019	5/8/2019	5/8/2019	5/8/2019	5/8/2019
PARAMETER	UOM	LOR	SE196386.055	SE196386.056	SE196386.057	SE196386.058	SE196386.059
pH	pH Units	0.1	4.7	4.8	5.1	5.2	5.1

			TP30	TP31	TP31	TP32	TP32
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.7-0.8	0.2-0.3	0.7-0.8	0.2-0.3	0.7-0.8
			5/8/2019	5/8/2019	5/8/2019	5/8/2019	5/8/2019
PARAMETER	UOM	LOR	SE196386.060	SE196386.061	SE196386.062	SE196386.063	SE196386.064
рН	pH Units	0.1	4.7	4.4	4.5	5.0	5.5

			TP33	TP33	TP34	TP34	TP35
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.7-0.8	0.2-0.3	0.7-0.8	0.2-0.3
			5/8/2019	5/8/2019	5/8/2019	5/8/2019	5/8/2019
PARAMETER	UOM	LOR	SE196386.065	SE196386.066	SE196386.067	SE196386.068	SE196386.069
рН	pH Units	0.1	4.8	4.9	4.7	5.0	5.5

			TP35	TP36	TP36	TP37	TP37
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6
			5/8/2019	5/8/2019	5/8/2019	5/8/2019	5/8/2019
PARAMETER	UOM	LOR	SE196386.070	SE196386.071	SE196386.072	SE196386.073	SE196386.074
pH	pH Units	0.1	5.9	5.0	5.6	5.5	5.2

21/08/2019 Page 3 of 14

pH in soil (1:5) [AN101] Tested: 16/8/2019 (continued)

			TP38	TP38	TP39	TP39	TP40
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3
			5/8/2019	5/8/2019	5/8/2019	5/8/2019	5/8/2019
PARAMETER	UOM	LOR	SE196386.075	SE196386.076	SE196386.077	SE196386.078	SE196386.079
pH	pH Units	0.1	5.4	5.0	5.6	5.4	5.4

			TP40	TP41	TP41	TP42	TP42
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6
			5/8/2019	5/8/2019	5/8/2019	5/8/2019	5/8/2019
2.2							
PARAMETER	UOM	LOR	SE196386.080	SE196386.081	SE196386.082	SE196386.083	SE196386.084
pH	pH Units	0.1	5.0	5.5	5.8	5.4	5.2

			TP43	TP43	TP44	TP44	TP45
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3
			5/8/2019	5/8/2019	5/8/2019	5/8/2019	5/8/2019
PARAMETER	UOM	LOR	SE196386.085	SE196386.086	SE196386.087	SE196386.088	SE196386.089
pH	pH Units	0.1	5.9	5.2	7.6	5.3	5.2

			TP45	TP46	TP46	TP47	TP47
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6
			5/8/2019	5/8/2019	5/8/2019	5/8/2019	5/8/2019
PARAMETER	UOM	LOR	SE196386.090	SE196386.091	SE196386.092	SE196386.093	SE196386.094
рН	pH Units	0.1	4.8	5.8	5.0	5.7	4.9

			TP48	TP48	TP49	TP50	TP50
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.2-0.3	0.5-0.6
			5/8/2019	5/8/2019	5/8/2019	5/8/2019	5/8/2019
PARAMETER	UOM	LOR	SE196386.095	SE196386.096	SE196386.097	SE196386.098	SE196386.099
рН	pH Units	0.1	5.4	4.9	5.2	5.2	5.0

			TP51	TP51	TP52	TP52	TP53
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3
			6/8/2019	6/8/2019	6/8/2019	6/8/2019	6/8/2019
PARAMETER	UOM	LOR	SE196386.100	SE196386.101	SE196386.102	SE196386.103	SE196386.104
рН	pH Units	0.1	5.0	5.5	5.0	5.4	4.7

			TP53	TP54	TP54	TP55	TP55
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6
			6/8/2019	6/8/2019	6/8/2019	6/8/2019	6/8/2019
PARAMETER	UOM	LOR	SE196386.105	SE196386.106	SE196386.107	SE196386.108	SE196386.109
pH	pH Units	0.1	5.0	4.5	5.4	5.0	5.3

21/08/2019 Page 4 of 14

pH in soil (1:5) [AN101] Tested: 16/8/2019 (continued)

			TP56	TP56	TP57	TP57	TP58
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3
			6/8/2019	6/8/2019	6/8/2019	6/8/2019	6/8/2019
PARAMETER	UOM	LOR	SE196386.110	SE196386.111	SE196386.112	SE196386.113	SE196386.114
рН	pH Units	0.1	5.9	5.0	5.6	4.9	5.3

			TP59	TP59	TP58	TP60	TP60
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6
			6/8/2019	6/8/2019	6/8/2019	6/8/2019	6/8/2019
PARAMETER	UOM	LOR	SE196386.115	SE196386.116	SE196386.117	SE196386.118	SE196386.119
pH	pH Units	0.1	5.2	5.0	5.0	6.4	5.1

			TP61	TP61	TP62	TP62	TP63
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3
			6/8/2019	6/8/2019	6/8/2019	6/8/2019	6/8/2019
PARAMETER	UOM	LOR	SE196386.120	SE196386.121	SE196386.122	SE196386.123	SE196386.124
рН	pH Units	0.1	5.6	4.9	5.5	4.9	5.3

			TP63
			SOIL
			0.5-0.6
			6/8/2019
PARAMETER	UOM	LOR	SE196386.125
рН	pH Units	0.1	5.3

21/08/2019 Page 5 of 14

Conductivity and TDS by Calculation - Soil [AN106] Tested: 16/8/2019

			TP1	TP1	TP2	TP4	TP4
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.7-0.8	0.2-0.3	0.2-0.3	0.7-0.8
PARAMETER	UOM	LOR	2/8/2019 SE196386.001	2/8/2019 SE196386.002	2/8/2019 SE196386.003	2/8/2019 SE196386.007	2/8/2019 SE196386.008
Conductivity of Extract (1:5 as received)	µS/cm	1	220	370	450	530	580
Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	240	460	500	650	700
						ı	
			TP5	TP6	TP6	TP7	TP7
1			2011	20"	20"	00"	00"
1			SOIL 0.2-0.3	SOIL 0.2-0.3	SOIL 0.7-0.8	SOIL 0.2-0.3	SOIL 0.7-0.8
				2/8/2019	2/8/2019		
PARAMETER Conductivity of Extract (4.5 on speciment)	UOM	LOR	SE196386.009	SE196386.011	SE196386.012	SE196386.013	SE196386.014
Conductivity of Extract (1:5 as received) Conductivity of Extract (1:5 dry sample basis)	μS/cm μS/cm	1	210	320	260	460	430
Conductivity of Extract (1.5 dry Sample basis)	ролоп	'	240	360	320	570	1900
	_	_	TP8	TP8	TP9	TP9	TP10
				•	•		
			SOIL 0.2-0.3	SOIL 0.7-0.8	SOIL 0.2-0.3	SOIL 0.7-0.8	SOIL 0.2-0.3
1			2/8/2019	2/8/2019	2/8/2019	2/8/2019	2/8/2019
PARAMETER	UOM	LOR	SE196386.015	SE196386.016	SE196386.017	SE196386.018	SE196386.019
Conductivity of Extract (1:5 as received)	μS/cm	1	290	170	410	250	400
Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	360	210	520	310	470
1			TP10	TP11	TP11	TP12	TP12
1			SOIL	SOIL	SOIL	SOIL	SOIL
			0.7-0.8 2/8/2019	0.2-0.3 2/8/2019	0.7-0.8 2/8/2019	0.2-0.3 2/8/2019	0.7-0.8 2/8/2019
PARAMETER	UOM	LOR	SE196386.020	SE196386.021	SE196386.022	SE196386.023	SE196386.024
Conductivity of Extract (1:5 as received)	μS/cm	1	190	310	270	150	190
Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	000		310	400	230
			230	350	310	180	230
			230	350	310	180	230
			TP13	350 TP13	TP14	180	TP15
			TP13	TP13	TP14	TP14	TP15
			TP13 SOIL 0.2-0.3	TP13 SOIL 0.7-0.8	TP14 SOIL 0.2-0.3	TP14 SOIL 0.7-0.8	TP15 SOIL 0.2-0.3
PARAMETER	UOM		TP13 SOIL 0.2-0.3 2/8/2019	TP13 SOIL 0.7-0.8 2/8/2019	TP14 SOIL 0.2-0.3 2/8/2019	TP14 SOIL 0.7-0.8 2/8/2019	TP15 SOIL 0.2-0.3 2/8/2019
PARAMETER Conductivity of Extract (1:5 as received)	UOM μS/cm	LOR 1	TP13 SOIL 0.2-0.3 2/8/2019 SE196386.025	TP13 SOIL 0.7-0.8 2/8/2019 SE196386.026	TP14 SOIL 0.2-0.3 2/8/2019 SE196386.027	TP14 SOIL 0.7-0.8 2/8/2019 SE196386.028	TP15 SOIL 0.2-0.3 2/8/2019 SE196386.029
PARAMETER Conductivity of Extract (1:5 as received) Conductivity of Extract (1:5 dry sample basis)	UOM μS/cm μS/cm	LOR	TP13 SOIL 0.2-0.3 2/8/2019	TP13 SOIL 0.7-0.8 2/8/2019	TP14 SOIL 0.2-0.3 2/8/2019	TP14 SOIL 0.7-0.8 2/8/2019	TP15 SOIL 0.2-0.3 2/8/2019
Conductivity of Extract (1:5 as received)	μS/cm	LOR 1	TP13 SOIL 0.2-0.3 2/8/2019 SE196386.025 410	TP13 SOIL 0.7-0.8 2/8/2019 SE196386.026 370	TP14 SOIL 0.2-0.3 2/8/2019 SE196386.027 570	TP14 SOIL 0.7-0.8 2/8/2019 SE196386.028 470	TP15 SOIL 0.2-0.3 2/8/2019 SE196386.029 340
Conductivity of Extract (1:5 as received)	μS/cm	LOR 1	TP13 SOIL 0.2-0.3 2/8/2019 SE196386.025 410	TP13 SOIL 0.7-0.8 2/8/2019 SE196386.026 370	TP14 SOIL 0.2-0.3 2/8/2019 SE196386.027 570	TP14 SOIL 0.7-0.8 2/8/2019 SE196386.028 470	TP15 SOIL 0.2-0.3 2/8/2019 SE196386.029 340
Conductivity of Extract (1:5 as received)	μS/cm	LOR 1	TP13 SOIL 0.2-0.3 2/8/2019 SE196386.025 410 510	TP13 SOIL 0.7-0.8 2/8/2019 SE196386.026 370 440 TP16	TP14 SOIL 0.2-0.3 2/8/2019 SE196386.027 570 710	TP14 SOIL 0.7-0.8 2/8/2019 SE196386.028 470 570	TP15 SOIL 0.2-0.3 2/8/2019 SE196386.029 340 420 TP17
Conductivity of Extract (1:5 as received)	μS/cm	LOR 1	TP13 SOIL 0.2-0.3 2/8/2019 SE196386.025 410 510	TP13 SOIL 0.7-0.8 2/8/2019 SE196386.026 370 440	TP14 SOIL 0.2-0.3 2/8/2019 SE196386.027 570 710	TP14 SOIL 0.7-0.8 2/8/2019 SE196386.028 470 570	TP15 SOIL 0.2-0.3 2/8/2019 SE196386.029 340 420
Conductivity of Extract (1:5 as received) Conductivity of Extract (1:5 dry sample basis)	μS/cm μS/cm	LOR 1 1	TP13 SOIL 0.2-0.3 2/8/2019 SE196386.025 410 510 TP15 SOIL 0.7-0.8 2/8/2019	TP13 SOIL 0.7-0.8 2/8/2019 SE196386.026 370 440 TP16 SOIL 0.2-0.3 2/8/2019	TP14 SOIL 0.2-0.3 2/8/2019 SE196386.027 570 710 TP16 SOIL 0.7-0.8 2/8/2019	TP14 SOIL 0.7-0.8 2/8/2019 SE196386.028 470 570 TP17 SOIL 0.2-0.3 2/8/2019	TP15 SOIL 0.2-0.3 2/8/2019 SE196386.029 340 420 TP17 SOIL 0.7-0.8 2/8/2019
Conductivity of Extract (1:5 as received) Conductivity of Extract (1:5 dry sample basis) PARAMETER	μS/cm μS/cm	LOR 1 1	TP13 SOIL 0.2-0.3 2/8/2019 SE196386.025 410 510 TP15 SOIL 0.7-0.8 2/8/2019 SE196386.030	TP13 SOIL 0.7-0.8 2/8/2019 SE196386.026 370 440 TP16 SOIL 0.2-0.3 2/8/2019 SE196386.031	TP14 SOIL 0.2-0.3 2/8/2019 SE196386.027 570 710 TP16 SOIL 0.7-0.8 2/8/2019 SE196386.032	TP14 SOIL 0.7-0.8 2/8/2019 SE196386.028 470 570 TP17 SOIL 0.2-0.3 2/8/2019 SE196386.033	TP15 SOIL 0.2-0.3 2/8/2019 SE196386.029 340 420 TP17 SOIL 0.7-0.8 2/8/2019 SE196386.034
Conductivity of Extract (1:5 as received) Conductivity of Extract (1:5 dry sample basis) PARAMETER Conductivity of Extract (1:5 as received)	μS/cm μS/cm	LOR 1 1 1 LOR 1	TP13 SOIL 0.2-0.3 2/8/2019 SE196386.025 410 510 TP15 SOIL 0.7-0.8 2/8/2019 SE196386.030 530	TP13 SOIL 0.7-0.8 2/8/2019 SE196386.026 370 440 TP16 SOIL 0.2-0.3 2/8/2019 SE196386.031 300	TP14 SOIL 0.2-0.3 2/8/2019 SE196386.027 570 710 TP16 SOIL 0.7-0.8 2/8/2019 SE196386.032 360	TP14 SOIL 0.7-0.8 2/8/2019 SE196386.028 470 570 TP17 SOIL 0.2-0.3 2/8/2019 SE196386.033 440	TP15 SOIL 0.2-0.3 2/8/2019 SE196386.029 340 420 TP17 SOIL 0.7-0.8 2/8/2019 SE196386.034 80
Conductivity of Extract (1:5 as received) Conductivity of Extract (1:5 dry sample basis) PARAMETER	μS/cm μS/cm	LOR 1 1	TP13 SOIL 0.2-0.3 2/8/2019 SE196386.025 410 510 TP15 SOIL 0.7-0.8 2/8/2019 SE196386.030	TP13 SOIL 0.7-0.8 2/8/2019 SE196386.026 370 440 TP16 SOIL 0.2-0.3 2/8/2019 SE196386.031	TP14 SOIL 0.2-0.3 2/8/2019 SE196386.027 570 710 TP16 SOIL 0.7-0.8 2/8/2019 SE196386.032	TP14 SOIL 0.7-0.8 2/8/2019 SE196386.028 470 570 TP17 SOIL 0.2-0.3 2/8/2019 SE196386.033	TP15 SOIL 0.2-0.3 2/8/2019 SE196386.029 340 420 TP17 SOIL 0.7-0.8 2/8/2019 SE196386.034
Conductivity of Extract (1:5 as received) Conductivity of Extract (1:5 dry sample basis) PARAMETER Conductivity of Extract (1:5 as received)	μS/cm μS/cm	LOR 1 1 1 LOR 1	TP13 SOIL 0.2-0.3 2/8/2019 SE196386.025 410 510 TP15 SOIL 0.7-0.8 2/8/2019 SE196386.030 530 670	TP13 SOIL 0.7-0.8 2/8/2019 SE196386.026 370 440 TP16 SOIL 0.2-0.3 2/8/2019 SE196386.031 300 370	TP14 SOIL 0.2-0.3 2/8/2019 SE196386.027 570 710 TP16 SOIL 0.7-0.8 2/8/2019 SE196386.032 360 480	TP14 SOIL 0.7-0.8 2/8/2019 SE196386.028 470 570 TP17 SOIL 0.2-0.3 2/8/2019 SE196386.033 440 510	TP15 SOIL 0.2-0.3 2/8/2019 SE196386.029 340 420 TP17 SOIL 0.7-0.8 2/8/2019 SE196386.034 80 96
Conductivity of Extract (1:5 as received) Conductivity of Extract (1:5 dry sample basis) PARAMETER Conductivity of Extract (1:5 as received)	μS/cm μS/cm	LOR 1 1 1 LOR 1	TP13 SOIL 0.2-0.3 2/8/2019 SE196386.025 410 510 TP15 SOIL 0.7-0.8 2/8/2019 SE196386.030 530 670	TP13 SOIL 0.7-0.8 2/8/2019 SE196386.026 370 440 TP16 SOIL 0.2-0.3 2/8/2019 SE196386.031 300 370 TP18	TP14 SOIL 0.2-0.3 2/8/2019 SE196386.027 570 710 TP16 SOIL 0.7-0.8 2/8/2019 SE196386.032 360 480 TP19	TP14 SOIL 0.7-0.8 2/8/2019 SE196386.028 470 570 TP17 SOIL 0.2-0.3 2/8/2019 SE196386.033 440 510	TP15 SOIL 0.2-0.3 2/8/2019 SE196386.029 340 420 TP17 SOIL 0.7-0.8 2/8/2019 SE196386.034 80 96
Conductivity of Extract (1:5 as received) Conductivity of Extract (1:5 dry sample basis) PARAMETER Conductivity of Extract (1:5 as received)	μS/cm μS/cm	LOR 1 1 1 LOR 1	TP13 SOIL 0.2-0.3 2/8/2019 SE196386.025 410 510 TP15 SOIL 0.7-0.8 2/8/2019 SE196386.030 530 670 TP18 SOIL	TP13 SOIL 0.7-0.8 2/8/2019 SE196386.026 370 440 TP16 SOIL 0.2-0.3 2/8/2019 SE196386.031 300 370 TP18 SOIL	TP14 SOIL 0.2-0.3 2/8/2019 SE196386.027 570 710 TP16 SOIL 0.7-0.8 2/8/2019 SE196386.032 360 480 TP19 SOIL	TP14 SOIL 0.7-0.8 2/8/2019 SE196386.028 470 570 TP17 SOIL 0.2-0.3 2/8/2019 SE196386.033 440 510 TP19 SOIL	TP15 SOIL 0.2-0.3 2/8/2019 SE196386.029 340 420 TP17 SOIL 0.7-0.8 2/8/2019 SE196386.034 80 96 TP20 SOIL
Conductivity of Extract (1:5 as received) Conductivity of Extract (1:5 dry sample basis) PARAMETER Conductivity of Extract (1:5 as received)	μS/cm μS/cm	LOR 1 1 1 LOR 1	TP13 SOIL 0.2-0.3 2/8/2019 SE196386.025 410 510 TP15 SOIL 0.7-0.8 2/8/2019 SE196386.030 530 670	TP13 SOIL 0.7-0.8 2/8/2019 SE196386.026 370 440 TP16 SOIL 0.2-0.3 2/8/2019 SE196386.031 300 370 TP18	TP14 SOIL 0.2-0.3 2/8/2019 SE196386.027 570 710 TP16 SOIL 0.7-0.8 2/8/2019 SE196386.032 360 480 TP19	TP14 SOIL 0.7-0.8 2/8/2019 SE196386.028 470 570 TP17 SOIL 0.2-0.3 2/8/2019 SE196386.033 440 510	TP15 SOIL 0.2-0.3 2/8/2019 SE196386.029 340 420 TP17 SOIL 0.7-0.8 2/8/2019 SE196386.034 80 96
Conductivity of Extract (1:5 as received) Conductivity of Extract (1:5 dry sample basis) PARAMETER Conductivity of Extract (1:5 as received) Conductivity of Extract (1:5 dry sample basis)	μS/cm μS/cm UOM μS/cm μS/cm	LOR 1 1 1 LOR 1	TP13 SOIL 0.2-0.3 2/8/2019 SE196386.025 410 510 TP15 SOIL 0.7-0.8 2/8/2019 SE196386.030 670 TP18 SOIL 0.2-0.3	TP13 SOIL 0.7-0.8 2/8/2019 SE196386.026 370 440 TP16 SOIL 0.2-0.3 2/8/2019 SE196386.031 300 370 TP18 SOIL 0.7-0.8	TP14 SOIL 0.2-0.3 2/8/2019 SE196386.027 570 710 TP16 SOIL 0.7-0.8 2/8/2019 SE196386.032 360 480 TP19 SOIL 0.2-0.3	TP14 SOIL 0.7-0.8 2/8/2019 SE196386.028 470 570 TP17 SOIL 0.2-0.3 2/8/2019 SE196386.033 440 510 TP19 SOIL 0.7-0.8	TP15 SOIL 0.2-0.3 2/8/2019 SE196386.029 340 420 TP17 SOIL 0.7-0.8 2/8/2019 SE196386.034 80 96 TP20 SOIL 0.2-0.3
Conductivity of Extract (1:5 as received) Conductivity of Extract (1:5 dry sample basis) PARAMETER Conductivity of Extract (1:5 as received) Conductivity of Extract (1:5 dry sample basis)	μS/cm μS/cm	LOR 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TP13 SOIL 0.2-0.3 2/8/2019 SE196386.025 410 510 TP15 SOIL 0.7-0.8 2/8/2019 SE196386.030 670 TP18 SOIL 0.2-0.3 2/8/2019	TP13 SOIL 0.7-0.8 2/8/2019 SE196386.026 370 440 TP16 SOIL 0.2-0.3 2/8/2019 SE196386.031 300 370 TP18 SOIL 0.7-0.8 2/8/2019	TP14 SOIL 0.2-0.3 2/8/2019 SE196386.027 570 710 TP16 SOIL 0.7-0.8 2/8/2019 SE196386.032 360 480 TP19 SOIL 0.2-0.3 2/8/2019	TP14 SOIL 0.7-0.8 2/8/2019 SE196386.028 470 570 TP17 SOIL 0.2-0.3 2/8/2019 SE196386.033 440 510 TP19 SOIL 0.7-0.8 2/8/2019	TP15 SOIL 0.2-0.3 2/8/2019 SE196386.029 340 420 TP17 SOIL 0.7-0.8 2/8/2019 SE196386.034 80 96 TP20 SOIL 0.2-0.3 2/8/2019

21/08/2019 Page 6 of 14

Conductivity and TDS by Calculation - Soil [AN106] Tested: 16/8/2019 (continued)

TP20	Conductivity and TDS by Calculation - Soil [AN106]	rested: 16/6/	2019 (0	conunuea)				
## Conducting of Estimate (1.5 or received)				TP20	TP21	TP21	TP22	TP22
## Conducting of Estimate (1.5 or received)				2011	8011	2011	2011	2011
PRAMETER USD DOTS 1 860 450 700 410 390								
Conductivity of Extract (1.5 ary xample basis)	DADAMETED	HOM	LOP					
PARAMETER Use LOR Service								
SOR SOIL S								
SOR SOIL S								
C-2-0.3 C-7-0.8 C-2-0.3 C-2-				TP23	TP23	TP24	TP24	TP25
C-2-0.3 C-7-0.8 C-2-0.3 C-2-				SOII	SOII	SOII	SOII	SOII
PARAMETER Uow Long Seriesas Ada Document of the Conductivity of Edited (1.5 dry semple basis) μ/Sim 1 180 120 230 620 280								
PARAMETER USM LOR SETIONAL (1.5 dry sample basis) µSkm 1 180 88 200 440 220 280	PARAMETER	LIOM	LOR					
PARAMETER Uow Lott Section								
SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL O.7-6.8 O.2-0.3 O.7-0.8 O.2-0.3 O	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	190	120	230	620	260
SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL O.7-6.8 O.2-0.3 O.7-0.8 O.2-0.3 O								
Discrete				TP25	TP26	TP26	TP27	TP27
PARAMETER				SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER								
Conductivity of Extract (1:5 as received) μSizm 1 380 200 280 220 340	PARAMETER	UOM	LOR					
TP28								
SOIL SOIL	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	400	220	310	250	400
SOIL SOIL								
December December				TP28	TP28	TP29	TP29	TP30
PARAMETER UOM LOR SE196386.055 SE196386.057 SE196386.058 SE196386.058 SE196386.058 SE196386.059				SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER UOM LOR SE196386.056 SE196386.057 SE196386.058 SE196386.059 Conductivity of Extract (1:5 as received) μS/cm 1 400 480 280 260 470								
Conductivity of Extract (1:5 as received) μSicm 1 400 480 290 260 470	PARAMETER	UOM	LOR					
TP30 TP31 TP31 TP32 TP32 SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL	Conductivity of Extract (1:5 as received)	μS/cm	1					470
SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	480	580	350	320	590
SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL								
O.7-0.8 O.2-0.3 O.7-0.8 O.2-0.3 O.7-0.8 O.2-0.3 O.7-0.8 O.2-0.3 O.7-0.8 O.2-0.3 O.7-0.8 O.2-0.3 O.7-0.8 O.2-0.3 O.7-0.8 O.2-0.3 O.7-0.8 O.2-0.3 O.7-0.8 O.2-0.3 O.7-0.8 O.2-0.3 O.7-0.8 O.2-0.3 O.7-0.8 O.7				TP30	TP31	TP31	TP32	TP32
Section Sec				SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER UOM LOR SE196386.060 SE196386.061 SE196386.062 SE196386.063 SE196386.063 SE196386.063 SE196386.064 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 630 370 480 490 600 TP33 TP34 TP34 TP35 SOIL SOIL <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
TP33 TP34 TP34 TP35	PARAMETER	UOM	LOR					
TP33 TP34 TP34 TP35 SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL	Conductivity of Extract (1:5 as received)	μS/cm	1	630	370	460	490	600
SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	780	440	570	580	750
SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL								
D 2-0.3				TP33	TP33	TP34	TP34	TP35
Selection Sel								
PARAMETER UOM LOR SE196386.065 SE196386.066 SE196386.067 SE196386.068 SE196386.069 Conductivity of Extract (1:5 as received) μS/cm 1 470 370 710 390 150 Conductivity of Extract (1:5 dry sample basis) μS/cm 1 610 470 860 440 180 TP35 TP36 TP36 TP37 TP37 SOIL								
Conductivity of Extract (1:5 dry sample basis) μS/cm 1 610 470 860 440 180 TP35 TP36 TP36 TP37 TP37 SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL	PARAMETER	UOM	LOR					
TP35 TP36 TP36 TP37 TP37 SOIL SOIL SOIL SOIL SOIL SOIL SOIL 0.5-0.6 0.2-0.3 0.5-0.6 0.2-0.3 0.5-0.6 5/8/2019 5/8/2019 5/8/2019 5/8/2019 5/8/2019 PARAMETER UOM LOR SE196386.070 SE196386.071 SE196386.072 SE196386.073 SE19638.074 Conductivity of Extract (1:5 as received) μS/cm 1 170 340 130 260 270	Conductivity of Extract (1:5 as received)	μS/cm	1	470	370	710	390	150
SOIL SOIL <t< td=""><td>Conductivity of Extract (1:5 dry sample basis)</td><td>μS/cm</td><td>1</td><td>610</td><td>470</td><td>860</td><td>440</td><td>180</td></t<>	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	610	470	860	440	180
SOIL SOIL <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
0.5-0.6 0.2-0.3 0.5-0.6 0.2-0.3 0.5-0.6 5/8/2019 5/8/201				TP35	TP36	TP36	TP37	TP37
5/8/2019 5/8/2019 5/8/2019 5/8/2019 5/8/2019 PARAMETER UOM LOR SE196386.070 SE196386.071 SE196386.072 SE196386.074 Conductivity of Extract (1:5 as received) μS/cm 1 170 340 130 260 270								
PARAMETER UOM LOR SE196386.070 SE196386.071 SE196386.072 SE196386.073 SE196386.074 Conductivity of Extract (1:5 as received) μS/cm 1 170 340 130 260 270								
	PARAMETER	UOM	LOR					
Conductivity of Extract (1:5 dry sample basis) μS/cm 1 190 420 150 290 330	Conductivity of Extract (1:5 as received)	μS/cm	1	170	340	130	260	270
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	190	420	150	290	330

21/08/2019 Page 7 of 14

Conductivity and TDS by Calculation - Soil [AN106] Tested: 16/8/2019 (continued)

			TP38	TP38	TP39	TP39	TP40
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3
			5/8/2019	5/8/2019	5/8/2019	5/8/2019	5/8/2019
PARAMETER	UOM	LOR	SE196386.075	SE196386.076	SE196386.077	SE196386.078	SE196386.079
Conductivity of Extract (1:5 as received)	μS/cm	1	250	290	180	91	200
Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	290	340	200	110	220
			TP40	TP41	TP41	TP42	TP42
			SOIL 0.5-0.6	SOIL 0.2-0.3	SOIL 0.5-0.6	SOIL 0.2-0.3	SOIL 0.5-0.6
			5/8/2019	5/8/2019	5/8/2019	5/8/2019	5/8/2019
PARAMETER	UOM	LOR	SE196386.080	SE196386.081	SE196386.082	SE196386.083	SE196386.084
Conductivity of Extract (1:5 as received)	μS/cm	1	230	140	160	98	180
Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	260	160	190	100	230
							•
			TP43	TP43	TP44	TP44	TP45
			SOIL 0.2-0.3	SOIL	SOIL	SOIL	SOIL 0.2-0.3
			0.2-0.3 5/8/2019	0.5-0.6 5/8/2019	0.2-0.3 5/8/2019	0.5-0.6 5/8/2019	0.2-0.3 5/8/2019
PARAMETER	UOM	LOR	SE196386.085	SE196386.086	SE196386.087	SE196386.088	SE196386.089
Conductivity of Extract (1:5 as received)	μS/cm	1	260	290	410	180	290
Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	300	340	440	230	350
				'			
			TP45	TP46	TP46	TP47	TP47
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6 5/8/2019	0.2-0.3 5/8/2019	0.5-0.6 5/8/2019	0.2-0.3 5/8/2019	0.5-0.6 5/8/2019
PARAMETER	UOM	LOR	SE196386.090	SE196386.091	SE196386.092	SE196386.093	SE196386.094
Conductivity of Extract (1:5 as received)	μS/cm	1	330	160	700	430	590
Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	420	170	830	490	740
							-
			TP48	TP48	TP49	TP50	TP50
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3 5/8/2019	0.5-0.6 5/8/2019	0.2-0.3 5/8/2019	0.2-0.3 5/8/2019	0.5-0.6 5/8/2019
PARAMETER	UOM	LOR	SE196386.095	SE196386.096	SE196386.097	SE196386.098	SE196386.099
Conductivity of Extract (1:5 as received)	μS/cm	1	340	680	590	470	950
Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	400	840	700	570	1200
			TP51	TP51	TP52	TP52	TP53
			SOIL 0.2-0.3	SOIL 0.5-0.6	SOIL 0.2-0.3	SOIL 0.5-0.6	SOIL 0.2-0.3
			6/8/2019	6/8/2019	6/8/2019	6/8/2019	6/8/2019
PARAMETER	UOM	LOR	SE196386.100	SE196386.101	SE196386.102	SE196386.103	SE196386.104
Conductivity of Extract (1:5 as received)	μS/cm	1	830	1200	530	710	700
	μονοιτι						000
Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	1000	1500	640	910	890
Conductivity of Extract (1:5 dry sample basis)		1	1000	1500	640	910	890
Conductivity of Extract (1:5 dry sample basis)		1	1000 TP53	1500 TP54	640 TP54	910 TP55	7P55
Conductivity of Extract (1:5 dry sample basis)		1	TP53	TP54	TP54	TP55	TP55
Conductivity of Extract (1:5 dry sample basis)		1	TP53	TP54	TP54	TP55	TP55
Conductivity of Extract (1:5 dry sample basis)		1	TP53	TP54	TP54	TP55	TP55
Conductivity of Extract (1:5 dry sample basis) PARAMETER		1 LOR	TP53 SOIL 0.5-0.6	TP54 SOIL 0.2-0.3	TP54 SOIL 0.5-0.6	TP55 SOIL 0.2-0.3	TP55 SOIL 0.5-0.6
	μS/cm		TP53 SOIL 0.5-0.6 6/8/2019	TP54 SOIL 0.2-0.3 6/8/2019	TP54 SOIL 0.5-0.6 6/8/2019	TP55 SOIL 0.2-0.3 6/8/2019	TP55 SOIL 0.5-0.6 6/8/2019
PARAMETER	μS/cm UOM	LOR	TP53 SOIL 0.5-0.6 6/8/2019 SE196386.105	TP54 SOIL 0.2-0.3 6/8/2019 SE196386.106	TP54 SOIL 0.5-0.6 6/8/2019 SE196386.107	TP55 SOIL 0.2-0.3 6/8/2019 SE196386.108	TP55 SOIL 0.5-0.6 6/8/2019 SE196386.109

21/08/2019 Page 8 of 14

Conductivity and TDS by Calculation - Soil [AN106] Tested: 16/8/2019 (continued)

			TP56	TP56	TP57	TP57	TP58
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3
			6/8/2019	6/8/2019	6/8/2019	6/8/2019	6/8/2019
PARAMETER	UOM	LOR	SE196386.110	SE196386.111	SE196386.112	SE196386.113	SE196386.114
Conductivity of Extract (1:5 as received)	μS/cm	1	230	590	440	720	400
Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	240	710	480	900	440

			TP59	TP59	TP58	TP60	TP60
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6
			6/8/2019	6/8/2019	6/8/2019	6/8/2019	6/8/2019
PARAMETER	UOM	LOR	SE196386.115	SE196386.116	SE196386.117	SE196386.118	SE196386.119
Conductivity of Extract (1:5 as received)	μS/cm	1	550	500	760	530	690
Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	650	550	960	640	800

			TP61	TP61	TP62	TP62	TP63
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3
			6/8/2019	6/8/2019	6/8/2019	6/8/2019	6/8/2019
PARAMETER	UOM	LOR	SE196386.120	SE196386.121	SE196386.122	SE196386.123	SE196386.124
Conductivity of Extract (1:5 as received)	μS/cm	1	510	440	240	490	570
Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	550	500	260	610	670

			TP63
			SOIL
			0.5-0.6
			6/8/2019
PARAMETER	UOM	LOR	SE196386.125
Conductivity of Extract (1:5 as received)	μS/cm	1	460
Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	510

21/08/2019 Page 9 of 14

Moisture Content [AN002] Tested: 15/8/2019

			TP1	TP1	TP2	TP4	TP4
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.7-0.8	0.2-0.3	0.2-0.3	0.7-0.8
				2/8/2019	2/8/2019		2/8/2019
PARAMETER	UOM	LOR	SE196386.001	SE196386.002	SE196386.003	SE196386.007	SE196386.008
% Moisture	%w/w	0.5	8.7	20	10	18	18

			TP5	TP6	TP6	TP7	TP7
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.2-0.3	0.7-0.8	0.2-0.3	0.7-0.8
				2/8/2019	2/8/2019		2/8/2019
PARAMETER	UOM	LOR	SE196386.009	SE196386.011	SE196386.012	SE196386.013	SE196386.014
% Moisture	%w/w	0.5	10	11	19	20	78

			TP8	TP8	TP9	TP9	TP10
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.7-0.8	0.2-0.3	0.7-0.8	0.2-0.3
				2/8/2019	2/8/2019		2/8/2019
PARAMETER	UOM	LOR	SE196386.015	SE196386.016	SE196386.017	SE196386.018	SE196386.019
% Moisture	%w/w	0.5	20	18	21	19	13

			TP10	TP11	TP11	TP12	TP12
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.7-0.8	0.2-0.3	0.7-0.8	0.2-0.3	0.7-0.8
				2/8/2019	2/8/2019		
PARAMETER	UOM	LOR	SE196386.020	SE196386.021	SE196386.022	SE196386.023	SE196386.024
% Moisture	%w/w	0.5	18	12	13	17	16

	% Moisture	%w/w	0.5	19	17	20	18	20
0.2-0.3 0.7-0.8 0.2-0.3 0.7-0.8 0.2-0.3	PARAMETER	UOM	LOR	SE196386.025	SE196386.026	SE196386.027	SE196386.028	SE196386.029
					2/8/2019	2/8/2019		
SOIL SOIL SOIL SOIL SOIL SOIL				0.2-0.3	0.7-0.8	0.2-0.3	0.7-0.8	0.2-0.3
				SOIL	SOIL	SOIL	SOIL	SOIL
TP13 TP13 TP14 TP14 TP15				IP13	IP13	IP14	IP14	1P15

			TP15	TP16	TP16	TP17	TP17
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.7-0.8	0.2-0.3	0.7-0.8	0.2-0.3	0.7-0.8
				2/8/2019	2/8/2019		2/8/2019
PARAMETER	UOM	LOR	SE196386.030	SE196386.031	SE196386.032	SE196386.033	SE196386.034
% Moisture	%w/w	0.5	20	19	24	15	17

			TP18	TP18	TP19	TP19	TP20
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.7-0.8	0.2-0.3	0.7-0.8	0.2-0.3
				2/8/2019	2/8/2019		
PARAMETER	UOM	LOR	SE196386.035	SE196386.036	SE196386.037	SE196386.038	SE196386.039
% Moisture	%w/w	0.5	9.0	13	12	9.1	17

21/08/2019 Page 10 of 14

Moisture Content [AN002] Tested: 15/8/2019 (continued)

			TP20	TP21	TP21	TP22	TP22
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.7-0.8	0.2-0.3	0.7-0.8	0.2-0.3	0.7-0.8
				2/8/2019	2/8/2019		2/8/2019
PARAMETER	UOM	LOR	SE196386.040	SE196386.041	SE196386.042	SE196386.043	SE196386.044
% Moisture	%w/w	0.5	16	20	17	14	19

			TP23	TP23	TP24	TP24	TP25
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.7-0.8	0.2-0.3	0.7-0.8	0.2-0.3
				2/8/2019	2/8/2019		2/8/2019
PARAMETER	UOM	LOR	SE196386.045	SE196386.046	SE196386.047	SE196386.048	SE196386.049
% Moisture	%w/w	0.5	15	19	14	22	17

			TP25	TP26	TP26	TP27	TP27
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.7-0.8	0.2-0.3	0.7-0.8	0.2-0.3	0.7-0.8
				5/8/2019	5/8/2019	5/8/2019	5/8/2019
PARAMETER	UOM	LOR	SE196386.050	SE196386.051	SE196386.052	SE196386.053	SE196386.054
% Moisture	%w/w	0.5	11	10	16	11	14

			TP28	TP28	TP29	TP29	TP30
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.7-0.8	0.2-0.3	0.7-0.8	0.2-0.3
			5/8/2019	5/8/2019	5/8/2019	5/8/2019	5/8/2019
PARAMETER	UOM	LOR	SE196386.055	SE196386.056	SE196386.057	SE196386.058	SE196386.059
% Moisture	%w/w	0.5	17	16	18	19	21

			TP30	TP31	TP31	TP32	TP32
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.7-0.8	0.2-0.3	0.7-0.8	0.2-0.3	0.7-0.8
			5/8/2019	5/8/2019	5/8/2019	5/8/2019	5/8/2019
PARAMETER	UOM	LOR	SE196386.060	SE196386.061	SE196386.062	SE196386.063	SE196386.064
% Moisture	%w/w	0.5	19	15	20	15	19

			TP33	TP33	TP34	TP34	TP35
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.7-0.8	0.2-0.3	0.7-0.8	0.2-0.3
			5/8/2019	5/8/2019	5/8/2019	5/8/2019	5/8/2019
PARAMETER	UOM	LOR	SE196386.065	SE196386.066	SE196386.067	SE196386.068	SE196386.069
% Moisture	%w/w	0.5	24	21	17	11	16

			TP35	TP36	TP36	TP37	TP37
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6
			5/8/2019	5/8/2019	5/8/2019	5/8/2019	5/8/2019
PARAMETER	UOM	LOR	SE196386.070	SE196386.071	SE196386.072	SE196386.073	SE196386.074
% Moisture	%w/w	0.5	12	17	14	11	17

21/08/2019 Page 11 of 14

Moisture Content [AN002] Tested: 15/8/2019 (continued)

			TP38	TP38	TP39	TP39	TP40
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3
			5/8/2019	5/8/2019	5/8/2019	5/8/2019	5/8/2019
PARAMETER	UOM	LOR	SE196386.075	SE196386.076	SE196386.077	SE196386.078	SE196386.079
% Moisture	%w/w	0.5	14	16	10	18	9.0

			TP40	TP41	TP41	TP42	TP42
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6
			5/8/2019	5/8/2019	5/8/2019	5/8/2019	5/8/2019
PARAMETER	UOM	LOR	SE196386.080	SE196386.081	SE196386.082	SE196386.083	SE196386.084
% Moisture	%w/w	0.5	13	7.8	18	5.9	19

			TP43	TP43	TP44	TP44	TP45
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3
			5/8/2019	5/8/2019	5/8/2019	5/8/2019	5/8/2019
PARAMETER	UOM	LOR	SE196386.085	SE196386.086	SE196386.087	SE196386.088	SE196386.089
% Moisture	%w/w	0.5	15	12	6.2	20	17

			TP45	TP46	TP46	TP47	TP47
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6
			5/8/2019	5/8/2019	5/8/2019	5/8/2019	5/8/2019
PARAMETER	UOM	LOR	SE196386.090	SE196386.091	SE196386.092	SE196386.093	SE196386.094
% Moisture	%w/w	0.5	22	7.5	15	11	21

			TP48	TP48	TP49	TP50	TP50
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.2-0.3	0.5-0.6
			5/8/2019	5/8/2019	5/8/2019	5/8/2019	5/8/2019
PARAMETER	UOM	LOR	SE196386.095	SE196386.096	SE196386.097	SE196386.098	SE196386.099
% Moisture	%w/w	0.5	13	19	16	16	21

			TP51	TP51	TP52	TP52	TP53
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3
			6/8/2019	6/8/2019	6/8/2019	6/8/2019	6/8/2019
PARAMETER	UOM	LOR	SE196386.100	SE196386.101	SE196386.102	SE196386.103	SE196386.104
% Moisture	%w/w	0.5	21	22	18	23	22

			TP53	TP54	TP54	TP55	TP55
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6
			6/8/2019	6/8/2019	6/8/2019	6/8/2019	6/8/2019
PARAMETER	UOM	LOR	SE196386.105	SE196386.106	SE196386.107	SE196386.108	SE196386.109
% Moisture	%w/w	0.5	20	19	19	17	23

21/08/2019 Page 12 of 14

SE196386 R0

Moisture Content [AN002] Tested: 15/8/2019 (continued)

			TP56	TP56	TP57	TP57	TP58
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3
			6/8/2019	6/8/2019	6/8/2019	6/8/2019	6/8/2019
PARAMETER	UOM	LOR	SE196386.110	SE196386.111	SE196386.112	SE196386.113	SE196386.114
% Moisture	%w/w	0.5	6.2	16	7.9	20	10

			TP59	TP59	TP58	TP60	TP60
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6
			6/8/2019	6/8/2019	6/8/2019	6/8/2019	6/8/2019
PARAMETER	UOM	LOR	SE196386.115	SE196386.116	SE196386.117	SE196386.118	SE196386.119
% Moisture	%w/w	0.5	16	9.9	21	17	14

			TP61	TP61	TP62	TP62	TP63
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.2-0.3	0.5-0.6	0.2-0.3	0.5-0.6	0.2-0.3
			6/8/2019	6/8/2019	6/8/2019	6/8/2019	6/8/2019
PARAMETER	UOM	LOR	SE196386.120	SE196386.121	SE196386.122	SE196386.123	SE196386.124
% Moisture	%w/w	0.5	7.3	12	8.6	19	16

			TP63
			SOIL
			0.5-0.6
			6/8/2019
PARAMETER	UOM	LOR	SE196386.125
% Moisture	%w/w	0.5	9.4

21/08/2019 Page 13 of 14

METHOD SUMMARY

SE196386 R0

METHOD _

METHODOLOGY SUMMARY =

AN002

The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.

AN101

pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, sediments and sludges, an extract with water (or 0.01M CaCl2) is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.

AN106

Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as μ mhos/cm or μ S/cm @ 25°C. For soils, an extract with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Salinity can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. Reference APHA 2510 B.

FOOTNOTES

* NATA accreditation does not cover the performance of this service.

** Indicative data, theoretical holding time exceeded.

Not analysed.NVL Not validated.

IS Insufficient sample for analysis.

LNR Sample listed, but not received.

UOM Unit of Measure.

LOR Limit of Reporting.

↑↓ Raised/lowered Limit of

Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: www.sgs.com.au.pv.sgsvr/en-qb/environment.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

21/08/2019 Page 14 of 14

121 items

CLIENT DETAILS

STATEMENT OF QA/QC PERFORMANCE

Ram Ravi-Indran **Huong Crawford** Manager Contact Geotechnique SGS Alexandria Environmental Client Laboratory Address P.O. Box 880 Address Unit 16, 33 Maddox St NSW 2751 Alexandria NSW 2015 02 4722 2700 +61 2 8594 0400 Telephone Telephone 02 4722 6161 +61 2 8594 0499 Facsimile Facsimile ram@geotech.com.au au.environmental.sydney@sgs.com Email Email

LABORATORY DETAILS

Project8599-28 Elara Boulevard, Marsden ParkSGS ReferenceSE196386 R0Order Number(Not specified)Date Received12 Aug 2019Samples125Date Reported21 Aug 2019

COMMENTS

Extraction Date

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document.

This QA/QC Statement must be read in conjunction with the referenced Analytical Report.

The Statement and the Analytical Report must not be reproduced except in full.

Conductivity and TDS by Calculation - Soil

All Data Quality Objectives were met with the exception of the following:

pH in soil (1:5)

Analysis Date

Conductivity and TDS by Calculation - Soil

Moisture Content

pH in soil (1:5)

121 items

41 items

pH in soil (1:5)

13 items

Duplicate

Conductivity and TDS by Calculation - Soil

2 items

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400 f +61 2 8594 0499 www.sgs.com.au

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Conductivity and TDS by Calculation - Soil

Method: ME-(AU)-[ENV]AN106

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP1	SE196386.001	LB181138	02 Aug 2019	12 Aug 2019	09 Aug 2019	16 Aug 2019†	09 Aug 2019	19 Aug 2019†
TP1	SE196386.002	LB181138	02 Aug 2019	12 Aug 2019	09 Aug 2019	16 Aug 2019†	09 Aug 2019	19 Aug 2019†
TP2	SE196386.003	LB181138	02 Aug 2019	12 Aug 2019	09 Aug 2019	16 Aug 2019†	09 Aug 2019	19 Aug 2019†
TP4	SE196386.007	LB181138	02 Aug 2019	12 Aug 2019	09 Aug 2019	16 Aug 2019†	09 Aug 2019	19 Aug 2019†
TP4	SE196386.008	LB181138	02 Aug 2019	12 Aug 2019	09 Aug 2019	16 Aug 2019†	09 Aug 2019	19 Aug 2019†
TP5	SE196386.009	LB181138	02 Aug 2019	12 Aug 2019	09 Aug 2019	16 Aug 2019†	09 Aug 2019	19 Aug 2019†
TP6	SE196386.011	LB181138	02 Aug 2019	12 Aug 2019	09 Aug 2019	16 Aug 2019†	09 Aug 2019	19 Aug 2019†
TP6	SE196386.012	LB181138	02 Aug 2019	12 Aug 2019	09 Aug 2019	16 Aug 2019†	09 Aug 2019	19 Aug 2019†
TP7	SE196386.013	LB181138	02 Aug 2019	12 Aug 2019	09 Aug 2019	16 Aug 2019†	09 Aug 2019	19 Aug 2019†
TP7	SE196386.014	LB181138	02 Aug 2019	12 Aug 2019	09 Aug 2019	16 Aug 2019†	09 Aug 2019	19 Aug 2019†
TP8	SE196386.015	LB181138	02 Aug 2019	12 Aug 2019	09 Aug 2019	16 Aug 2019†	09 Aug 2019	19 Aug 2019†
TP8	SE196386.016	LB181138	02 Aug 2019	12 Aug 2019	09 Aug 2019	16 Aug 2019†	09 Aug 2019	19 Aug 2019†
TP9	SE196386.017	LB181138	02 Aug 2019	12 Aug 2019	09 Aug 2019	16 Aug 2019†	09 Aug 2019	19 Aug 2019†
TP9	SE196386.018	LB181280	02 Aug 2019	12 Aug 2019	09 Aug 2019	19 Aug 2019†	09 Aug 2019	20 Aug 2019†
TP10	SE196386.019	LB181280	02 Aug 2019	12 Aug 2019	09 Aug 2019	19 Aug 2019†	09 Aug 2019	20 Aug 2019†
TP10	SE196386.020	LB181280	02 Aug 2019	12 Aug 2019	09 Aug 2019	19 Aug 2019†	09 Aug 2019	20 Aug 2019†
TP11	SE196386.021	LB181280	02 Aug 2019	12 Aug 2019	09 Aug 2019	19 Aug 2019†	09 Aug 2019	20 Aug 2019†
TP11	SE196386.022	LB181280	02 Aug 2019	12 Aug 2019	09 Aug 2019	19 Aug 2019†	09 Aug 2019	20 Aug 2019†
TP12	SE196386.023	LB181280	02 Aug 2019	12 Aug 2019	09 Aug 2019	19 Aug 2019†	09 Aug 2019	20 Aug 2019†
TP12	SE196386.024	LB181280	02 Aug 2019	12 Aug 2019	09 Aug 2019	19 Aug 2019†	09 Aug 2019	20 Aug 2019†
TP13	SE196386.025	LB181280	02 Aug 2019	12 Aug 2019	09 Aug 2019	19 Aug 2019†	09 Aug 2019	20 Aug 2019†
TP13	SE196386.026	LB181280	02 Aug 2019	12 Aug 2019	09 Aug 2019	19 Aug 2019†	09 Aug 2019	20 Aug 2019†
TP14	SE196386.027	LB181280	02 Aug 2019	12 Aug 2019	09 Aug 2019	19 Aug 2019†	09 Aug 2019	20 Aug 2019†
TP14	SE196386.028	LB181280	02 Aug 2019	12 Aug 2019	09 Aug 2019	19 Aug 2019†	09 Aug 2019	20 Aug 2019†
TP15	SE196386.029	LB181280	02 Aug 2019	12 Aug 2019	09 Aug 2019	19 Aug 2019†	09 Aug 2019	20 Aug 2019†
TP15	SE196386.030	LB181280	02 Aug 2019	12 Aug 2019	09 Aug 2019	19 Aug 2019†	09 Aug 2019	20 Aug 2019†
TP16	SE196386.031	LB181280	02 Aug 2019	12 Aug 2019	09 Aug 2019	19 Aug 2019†	09 Aug 2019	20 Aug 2019†
TP16	SE196386.032	LB181280	02 Aug 2019	12 Aug 2019	09 Aug 2019	19 Aug 2019†	09 Aug 2019	20 Aug 2019†
TP17	SE196386.033	LB181280	02 Aug 2019	12 Aug 2019	09 Aug 2019	19 Aug 2019†	09 Aug 2019	20 Aug 2019†
TP17	SE196386.034	LB181280	02 Aug 2019	12 Aug 2019	09 Aug 2019	19 Aug 2019†	09 Aug 2019	20 Aug 2019†
TP18	SE196386.035	LB181280	02 Aug 2019	12 Aug 2019	09 Aug 2019	19 Aug 2019†	09 Aug 2019	20 Aug 2019†
TP18	SE196386.036	LB181280	02 Aug 2019	12 Aug 2019	09 Aug 2019	19 Aug 2019†	09 Aug 2019	20 Aug 2019†
TP19	SE196386.037	LB181280	02 Aug 2019	12 Aug 2019	09 Aug 2019	19 Aug 2019†	09 Aug 2019	20 Aug 2019†
TP19	SE196386.038	LB181344	02 Aug 2019	12 Aug 2019	09 Aug 2019	20 Aug 2019†	09 Aug 2019	21 Aug 2019†
TP20	SE196386.039	LB181344	02 Aug 2019	12 Aug 2019	09 Aug 2019	20 Aug 2019†	09 Aug 2019	21 Aug 2019†
TP20	SE196386.040	LB181344	02 Aug 2019	12 Aug 2019	09 Aug 2019	20 Aug 2019†	09 Aug 2019	21 Aug 2019†
TP21	SE196386.041	LB181344	02 Aug 2019	12 Aug 2019	09 Aug 2019	20 Aug 2019†	09 Aug 2019	21 Aug 2019†
TP21	SE196386.042	LB181344	02 Aug 2019	12 Aug 2019	09 Aug 2019	20 Aug 2019†	09 Aug 2019	21 Aug 2019†
TP22	SE196386.043	LB181305	02 Aug 2019	12 Aug 2019	09 Aug 2019	20 Aug 2019†	09 Aug 2019	20 Aug 2019†
TP22	SE196386.044	LB181305	02 Aug 2019	12 Aug 2019	09 Aug 2019	20 Aug 2019†	09 Aug 2019	20 Aug 2019†
TP23	SE196386.045	LB181305	02 Aug 2019	12 Aug 2019	09 Aug 2019	20 Aug 2019†	09 Aug 2019	20 Aug 2019†
TP23	SE196386.046	LB181305	02 Aug 2019	12 Aug 2019	09 Aug 2019	20 Aug 2019†	09 Aug 2019	20 Aug 2019†
TP24	SE196386.047	LB181305	02 Aug 2019	12 Aug 2019	09 Aug 2019	20 Aug 2019†	09 Aug 2019	20 Aug 2019†
TP24	SE196386.048	LB181305	02 Aug 2019	12 Aug 2019	09 Aug 2019	20 Aug 2019†	09 Aug 2019	20 Aug 2019†
TP25	SE196386.049	LB181305	02 Aug 2019	12 Aug 2019	09 Aug 2019	20 Aug 2019†	09 Aug 2019	20 Aug 2019†
TP25	SE196386.050	LB181305	02 Aug 2019	12 Aug 2019	09 Aug 2019	20 Aug 2019†	09 Aug 2019	20 Aug 2019†
TP26	SE196386.051	LB181305	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	20 Aug 2019†
TP26	SE196386.052	LB181305	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	20 Aug 2019†
TP27	SE196386.053	LB181305	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	20 Aug 2019†
TP27	SE196386.054	LB181305	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	20 Aug 2019†
TP28	SE196386.055	LB181305	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	20 Aug 2019†
TP28	SE196386.056	LB181305	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	20 Aug 2019†
TP29	SE196386.057	LB181305	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	20 Aug 2019†
TP29	SE196386.058	LB181305	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	20 Aug 2019†
TP30	SE196386.059	LB181305	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	20 Aug 2019†
TP30	SE196386.060	LB181307	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	20 Aug 2019†
TP31	SE196386.061	LB181307	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	20 Aug 2019†
TP31	SE196386.062	LB181307	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	20 Aug 2019†
TP32	SE196386.063	LB181307	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	20 Aug 2019†
TP32	SE196386.064	LB181307	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	20 Aug 2019†
02	52.50000.004	25.51007	00 / 10g £0 10			201.09 20101		207.09 20101

21/8/2019 Page 2 of 16

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Conductivity and TDS by Calculation - Soil (continued)

Method: ME-(AU)-[ENV]AN106

Conductivity and 1DS by	Calculation - Soil (continued	·)					Mediod.	ME-(AU)-[ENV]AN106
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP33	SE196386.065	LB181307	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	20 Aug 2019†
TP33	SE196386.066	LB181307	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	20 Aug 2019†
TP34	SE196386.067	LB181307	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	20 Aug 2019†
TP34	SE196386.068	LB181307	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	20 Aug 2019†
TP35	SE196386.069	LB181307	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	20 Aug 2019†
TP35	SE196386.070	LB181307	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	20 Aug 2019†
TP36	SE196386.071	LB181307	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	20 Aug 2019†
TP36	SE196386.072	LB181307	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	20 Aug 2019†
TP37	SE196386.073	LB181307	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	20 Aug 2019†
TP37	SE196386.074	LB181307	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	20 Aug 2019†
TP38	SE196386.075	LB181307	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	20 Aug 2019†
TP38	SE196386.076	LB181307	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	20 Aug 2019†
TP39	SE196386.077	LB181307	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	20 Aug 2019†
TP39	SE196386.078	LB181311	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	20 Aug 2019†
TP40	SE196386.079	LB181311	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	20 Aug 2019†
TP40	·							
	SE196386.080	LB181311	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	20 Aug 2019†
TP41	SE196386.081	LB181311	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	20 Aug 2019†
TP41	SE196386.082	LB181340	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	21 Aug 2019†
TP42	SE196386.083	LB181340	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	21 Aug 2019†
TP42	SE196386.084	LB181340	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	21 Aug 2019†
TP43	SE196386.085	LB181340	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	21 Aug 2019†
TP43	SE196386.086	LB181340	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	21 Aug 2019†
TP44	SE196386.087	LB181340	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	21 Aug 2019†
TP44	SE196386.088	LB181340	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	21 Aug 2019†
TP45	SE196386.089	LB181340	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	21 Aug 2019†
TP45	SE196386.090	LB181340	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	21 Aug 2019†
TP46	SE196386.091	LB181340	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	21 Aug 2019†
TP46	SE196386.092	LB181340	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	21 Aug 2019†
TP47	SE196386.093	LB181340	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	21 Aug 2019†
TP47	SE196386.094	LB181340	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	21 Aug 2019†
TP48	SE196386.095	LB181340	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	21 Aug 2019†
TP48	SE196386.096	LB181340	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	21 Aug 2019†
TP49	SE196386.097	LB181340	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	21 Aug 2019†
TP50	SE196386.098	LB181340	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	21 Aug 2019†
TP50	SE196386.099	LB181343	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	12 Aug 2019	21 Aug 2019†
TP51	SE196386.100	LB181343	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	21 Aug 2019†
TP51	SE196386.101	LB181343	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	21 Aug 2019†
TP52	SE196386.102	LB181343	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	21 Aug 2019†
TP52	SE196386.103	LB181343	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	21 Aug 2019†
TP53	SE196386.104	LB181343	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	21 Aug 2019†
TP53	SE196386.105	LB181343	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	21 Aug 2019†
TP54	SE196386.106	LB181343	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	21 Aug 2019†
TP54	SE196386.107	LB181343	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	21 Aug 2019†
TP55	SE196386.107	LB181343	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	21 Aug 2019†
TP55	SE196386.109	LB181343	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	21 Aug 2019†
TP56	SE196386.110 SE196386.111	LB181343 LB181344	06 Aug 2019	12 Aug 2019	13 Aug 2019 13 Aug 2019	20 Aug 2019† 20 Aug 2019†	13 Aug 2019	21 Aug 2019† 21 Aug 2019†
TP57	SE196386.111	LB181344	06 Aug 2019 06 Aug 2019	12 Aug 2019		20 Aug 2019†	13 Aug 2019	21 Aug 2019†
				12 Aug 2019	13 Aug 2019		13 Aug 2019	
TP57	SE196386.113	LB181344	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	21 Aug 2019†
TP58	SE196386.114	LB181344	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	21 Aug 2019†
TP59	SE196386.115	LB181344	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	21 Aug 2019†
TP59	SE196386.116	LB181344	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	21 Aug 2019†
TP58	SE196386.117	LB181344	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	21 Aug 2019†
TP60	SE196386.118	LB181312	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	20 Aug 2019†
TP60	SE196386.119	LB181312	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	20 Aug 2019†
TP61	SE196386.120	LB181312	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	20 Aug 2019†
TP61	SE196386.121	LB181312	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	20 Aug 2019†
TP62	SE196386.122	LB181312	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	20 Aug 2019†
TP62	SE196386.123	LB181312	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	20 Aug 2019†
TP63	SE196386.124	LB181312	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	20 Aug 2019†

21/8/2019 Page 3 of 16

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Conductivity and TDS by Calculation - Soil (continued)

Method: ME-(AU)-[ENV]AN106

Conductivity and TDS by (Salculation - Soil (continued	')					Wieurou.	ME-(AU)-[ENV]AN106
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP63	SE196386.125	LB181312	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	13 Aug 2019	20 Aug 2019†
Moisture Content							Method:	ME-(AU)-[ENV]AN002
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP1	SE196386.001	LB181033	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	19 Aug 2019
TP1	SE196386.002	LB181033	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	19 Aug 2019
TP2	SE196386.003	LB181033	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	19 Aug 2019
TP4	SE196386.007	LB181033	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	19 Aug 2019
TP4	SE196386.008	LB181033	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	19 Aug 2019
TP5	SE196386.009	LB181033	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	19 Aug 2019
TP6	SE196386.011	LB181033	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	19 Aug 2019
TP6	SE196386.012	LB181033	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	19 Aug 2019
TP7	SE196386.013	LB181033	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	19 Aug 2019
TP7	SE196386.014	LB181033	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	19 Aug 2019
TP8	SE196386.015	LB181033	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	19 Aug 2019
TP8	SE196386.016	LB181033	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	19 Aug 2019
TP9	SE196386.017	LB181033	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	19 Aug 2019
TP9	SE196386.018	LB181034	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP10	SE196386.019	LB181034	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP10	SE196386.020	LB181034	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP11	SE196386.021	LB181034	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP11	SE196386.022	LB181034	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP12	SE196386.023	LB181034	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP12	SE196386.024	LB181034	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP13	SE196386.025	LB181034	02 Aug 2019		16 Aug 2019			
TP13		LB181034	-	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
	SE196386.026 SE196386.027		02 Aug 2019	12 Aug 2019	-	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP14		LB181034	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP14 TP15	SE196386.028	LB181034	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
	SE196386.029	LB181034	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP15	SE196386.030	LB181034	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP16	SE196386.031	LB181034 LB181034	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP16	SE196386.032		02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP17	SE196386.033	LB181034	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP17	SE196386.034	LB181034	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP18	SE196386.035	LB181034	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP18	SE196386.036	LB181034	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP19	SE196386.037	LB181034	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP19	SE196386.038	LB181035	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP20	SE196386.039	LB181035	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP20	SE196386.040	LB181035	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP21	SE196386.041	LB181035	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP21	SE196386.042	LB181035	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP22	SE196386.043	LB181035	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP22	SE196386.044	LB181035	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP23	SE196386.045	LB181035	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP23	SE196386.046	LB181035	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP24	SE196386.047	LB181035	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP24	SE196386.048	LB181035	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP25	SE196386.049	LB181035	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP25	SE196386.050	LB181035	02 Aug 2019	12 Aug 2019	16 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP26	SE196386.051	LB181035	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP26	SE196386.052	LB181035	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP27	SE196386.053	LB181035	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP27	SE196386.054	LB181035	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP28	SE196386.055	LB181035	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP28	SE196386.056	LB181035	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP29	SE196386.057	LB181035	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP29	SE196386.058	LB181036	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP30	SE196386.059	LB181036	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019

21/8/2019 Page 4 of 16

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Moisture Content (continued) Method: ME-(AU)-[ENV]AN002

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP31	SE196386.061	LB181036	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP31	SE196386.062	LB181036	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP32	SE196386.063	LB181036	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP32	SE196386.064	LB181036	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP33	SE196386.065	LB181036	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP33	SE196386.066	LB181036	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP34	SE196386.067	LB181036	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP34	SE196386.068	LB181036	05 Aug 2019	12 Aug 2019	19 Aug 2019		20 Aug 2019	20 Aug 2019
TP35						15 Aug 2019		
	SE196386.069	LB181036	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP35	SE196386.070	LB181036	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP36	SE196386.071	LB181036	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP36	SE196386.072	LB181036	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP37	SE196386.073	LB181036	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP37	SE196386.074	LB181036	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP38	SE196386.075	LB181036	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP38	SE196386.076	LB181036	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP39	SE196386.077	LB181036	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP39	SE196386.078	LB181037	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP40	SE196386.079	LB181037	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP40	SE196386.080	LB181037	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP41	SE196386.081	LB181037	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP41	SE196386.082	LB181037	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP42	SE196386.083	LB181037	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP42	SE196386.084	LB181037	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP43	SE196386.085	LB181037	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP43	SE196386.086	LB181037	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP44	SE196386.087	LB181037	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP44	SE196386.088	LB181037	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP45	SE196386.089	LB181037	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP45	SE196386.090	LB181037	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP46	SE196386.091	LB181037	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP46	SE196386.092	LB181037	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP47	SE196386.093	LB181037	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP47	·							
	SE196386.094	LB181037	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP48	SE196386.095	LB181037	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP48	SE196386.096	LB181037	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP49	SE196386.097	LB181037	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP50	SE196386.098	LB181038	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP50	SE196386.099	LB181038	05 Aug 2019	12 Aug 2019	19 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP51	SE196386.100	LB181038	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP51	SE196386.101	LB181038	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP52	SE196386.102	LB181038	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP52	SE196386.103	LB181038	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP53	SE196386.104	LB181038	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP53	SE196386.105	LB181038	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP54	SE196386.106	LB181038	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP54	SE196386.107	LB181038	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP55	SE196386.108	LB181038	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP55	SE196386.109	LB181038	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP56	SE196386.110	LB181038	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP56	SE196386.111	LB181038	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP57	SE196386.112	LB181038	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP57	SE196386.113	LB181038	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP58	SE196386.114	LB181038	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP59	SE196386.115	LB181038	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP59	SE196386.116	LB181038	06 Aug 2019	12 Aug 2019	20 Aug 2019 20 Aug 2019	15 Aug 2019	20 Aug 2019 20 Aug 2019	21 Aug 2019†
TP58			06 Aug 2019 06 Aug 2019	12 Aug 2019 12 Aug 2019	20 Aug 2019 20 Aug 2019		-	
	SE196386.117	LB181038				15 Aug 2019	20 Aug 2019	21 Aug 2019†
TP60	SE196386.118	LB181041	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP60	SE196386.119	LB181041	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP61	SE196386.120	LB181041	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019

21/8/2019 Page 5 of 16

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Moisture Content (continued) Method: ME-(AU)-[ENV]AN002

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP61	SE196386.121	LB181041	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP62	SE196386.122	LB181041	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP62	SE196386.123	LB181041	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP63	SE196386.124	LB181041	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019
TP63	SE196386.125	LB181041	06 Aug 2019	12 Aug 2019	20 Aug 2019	15 Aug 2019	20 Aug 2019	20 Aug 2019

pH in soil (1:5) Method: ME-(AU)-[ENV]AN101

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP1	SE196386.001	LB181138	02 Aug 2019	12 Aug 2019	09 Aug 2019	16 Aug 2019†	17 Aug 2019	19 Aug 2019†
TP1	SE196386.002	LB181138	02 Aug 2019	12 Aug 2019	09 Aug 2019	16 Aug 2019†	17 Aug 2019	19 Aug 2019†
TP2	SE196386.003	LB181138	02 Aug 2019	12 Aug 2019	09 Aug 2019	16 Aug 2019†	17 Aug 2019	19 Aug 2019†
TP4	SE196386.007	LB181138	02 Aug 2019	12 Aug 2019	09 Aug 2019	16 Aug 2019†	17 Aug 2019	19 Aug 2019†
TP4	SE196386.008	LB181138	02 Aug 2019	12 Aug 2019	09 Aug 2019	16 Aug 2019†	17 Aug 2019	19 Aug 2019†
TP5	SE196386.009	LB181138		12 Aug 2019	09 Aug 2019	16 Aug 2019†	17 Aug 2019	19 Aug 2019†
TP6	SE196386.009	LB181138	02 Aug 2019	12 Aug 2019 12 Aug 2019		16 Aug 2019†		19 Aug 2019†
			02 Aug 2019	-	09 Aug 2019		17 Aug 2019	
TP6	SE196386.012	LB181138	02 Aug 2019	12 Aug 2019	09 Aug 2019	16 Aug 2019†	17 Aug 2019	19 Aug 2019†
TP7	SE196386.013	LB181138	02 Aug 2019	12 Aug 2019	09 Aug 2019	16 Aug 2019†	17 Aug 2019	19 Aug 2019†
TP7	SE196386.014	LB181138	02 Aug 2019	12 Aug 2019	09 Aug 2019	16 Aug 2019†	17 Aug 2019	19 Aug 2019†
TP8	SE196386.015	LB181138	02 Aug 2019	12 Aug 2019	09 Aug 2019	16 Aug 2019†	17 Aug 2019	19 Aug 2019†
TP8	SE196386.016	LB181138	02 Aug 2019	12 Aug 2019	09 Aug 2019	16 Aug 2019†	17 Aug 2019	19 Aug 2019†
TP9	SE196386.017	LB181138	02 Aug 2019	12 Aug 2019	09 Aug 2019	16 Aug 2019†	17 Aug 2019	19 Aug 2019†
TP9	SE196386.018	LB181280	02 Aug 2019	12 Aug 2019	09 Aug 2019	19 Aug 2019†	20 Aug 2019	20 Aug 2019
TP10	SE196386.019	LB181280	02 Aug 2019	12 Aug 2019	09 Aug 2019	19 Aug 2019†	20 Aug 2019	20 Aug 2019
TP10	SE196386.020	LB181280	02 Aug 2019	12 Aug 2019	09 Aug 2019	19 Aug 2019†	20 Aug 2019	20 Aug 2019
TP11	SE196386.021	LB181280	02 Aug 2019	12 Aug 2019	09 Aug 2019	19 Aug 2019†	20 Aug 2019	20 Aug 2019
TP11	SE196386.022	LB181280	02 Aug 2019	12 Aug 2019	09 Aug 2019	19 Aug 2019†	20 Aug 2019	20 Aug 2019
TP12	SE196386.023	LB181280	02 Aug 2019	12 Aug 2019	09 Aug 2019	19 Aug 2019†	20 Aug 2019	20 Aug 2019
TP12	SE196386.024	LB181280	02 Aug 2019	12 Aug 2019	09 Aug 2019	19 Aug 2019†	20 Aug 2019	20 Aug 2019
TP13	SE196386.025	LB181280	02 Aug 2019	12 Aug 2019	09 Aug 2019	19 Aug 2019†	20 Aug 2019	20 Aug 2019
TP13	SE196386.026	LB181280	02 Aug 2019	12 Aug 2019	09 Aug 2019	19 Aug 2019†	20 Aug 2019	20 Aug 2019
TP14	SE196386.027	LB181280	02 Aug 2019	12 Aug 2019	09 Aug 2019	19 Aug 2019†	20 Aug 2019	20 Aug 2019
TP14	SE196386.028	LB181280	02 Aug 2019	12 Aug 2019	09 Aug 2019	19 Aug 2019†	20 Aug 2019	20 Aug 2019
TP15	SE196386.029	LB181280	02 Aug 2019	12 Aug 2019	09 Aug 2019	19 Aug 2019†	20 Aug 2019	20 Aug 2019
TP15	SE196386.030	LB181280	02 Aug 2019	12 Aug 2019	09 Aug 2019	19 Aug 2019†	20 Aug 2019	20 Aug 2019
TP16	SE196386.031	LB181280	02 Aug 2019	12 Aug 2019	09 Aug 2019	19 Aug 2019†	20 Aug 2019	20 Aug 2019
TP16	SE196386.032	LB181280	02 Aug 2019	12 Aug 2019	09 Aug 2019	19 Aug 2019†	20 Aug 2019	20 Aug 2019
TP17	SE196386.033	LB181280	02 Aug 2019	12 Aug 2019	09 Aug 2019	19 Aug 2019†	20 Aug 2019	20 Aug 2019
TP17	SE196386.034	LB181280	02 Aug 2019	12 Aug 2019	09 Aug 2019	19 Aug 2019†	20 Aug 2019	20 Aug 2019
TP18	SE196386.035	LB181280	02 Aug 2019	12 Aug 2019	09 Aug 2019	19 Aug 2019†	20 Aug 2019	20 Aug 2019
TP18	SE196386.036	LB181280	02 Aug 2019	12 Aug 2019	09 Aug 2019	19 Aug 2019†	20 Aug 2019	20 Aug 2019
TP19	SE196386.037	LB181280	02 Aug 2019	12 Aug 2019	09 Aug 2019	19 Aug 2019†	20 Aug 2019	20 Aug 2019
TP19	SE196386.038	LB181344	02 Aug 2019	12 Aug 2019	09 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP20	SE196386.039	LB181344	02 Aug 2019	12 Aug 2019	09 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP20	SE196386.040	LB181344	02 Aug 2019	12 Aug 2019	09 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP21	SE196386.041	LB181344	02 Aug 2019	12 Aug 2019	09 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP21	SE196386.042	LB181344	02 Aug 2019	12 Aug 2019	09 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP22	SE196386.043	LB181305	02 Aug 2019	12 Aug 2019	09 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP22	SE196386.044	LB181305	02 Aug 2019	12 Aug 2019	09 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP23	SE196386.045	LB181305	02 Aug 2019	12 Aug 2019	09 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP23	SE196386.046	LB181305	02 Aug 2019	12 Aug 2019	09 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP24	SE196386.047	LB181305	02 Aug 2019	12 Aug 2019	09 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP24	SE196386.048	LB181305	02 Aug 2019	12 Aug 2019	09 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP25	SE196386.049	LB181305	02 Aug 2019	12 Aug 2019	09 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP25	SE196386.050	LB181305	02 Aug 2019	12 Aug 2019	09 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP26	SE196386.051	LB181305	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP26	SE196386.052	LB181305	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP27	SE196386.053	LB181305	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP27	SE196386.054	LB181305	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP28	SE196386.055	LB181305	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP28	SE196386.056	LB181305	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
11 20	GE 190300.000	ED 10 1303	00 Aug 20 18	12 Aug 2018	12 Aug 2018	20 Aug 2018]	2 1 Aug 20 18	20 Aug 20 18

21/8/2019 Page 6 of 16

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

pH in soil (1:5) (continued)

Method: ME-(AU)-[ENV]AN101

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP29	SE196386.057	LB181305	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP29	SE196386.058	LB181305	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP30	SE196386.059	LB181305		12 Aug 2019				
		·	05 Aug 2019		12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP30	SE196386.060	LB181307	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP31	SE196386.061	LB181307	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP31	SE196386.062	LB181307	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP32	SE196386.063	LB181307	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP32	SE196386.064	LB181307	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP33	SE196386.065	LB181307	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP33	SE196386.066	LB181307	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP34	SE196386.067	LB181307	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP34	SE196386.068	LB181307	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP35	SE196386.069	LB181307	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP35	SE196386.070	LB181307	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP36	SE196386.071	LB181307	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP36	SE196386.072	LB181307	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP37	SE196386.073	LB181307	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP37	SE196386.074	LB181307	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP38	SE196386.075	LB181307	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP38	SE196386.076	LB181307	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP39	SE196386.077	LB181307	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP39	SE196386.078	LB181311	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP40	SE196386.079	LB181311	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP40	SE196386.080	LB181311	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP41	SE196386.081	LB181311	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP41	SE196386.082	LB181340	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP42	SE196386.083	LB181340	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP42	SE196386.084	LB181340	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP43	SE196386.085	LB181340	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP43	SE196386.086	LB181340	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP44	SE196386.087	LB181340	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP44	SE196386.088	LB181340	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP45	SE196386.089	LB181340	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP45	SE196386.090	LB181340	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP46	SE196386.091	LB181340				20 Aug 2019†		20 Aug 2019
TP46	SE196386.092	LB181340	05 Aug 2019	12 Aug 2019	12 Aug 2019		21 Aug 2019	
			05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP47	SE196386.093	LB181340	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP47	SE196386.094	LB181340	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP48	SE196386.095	LB181340	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP48	SE196386.096	LB181340	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP49	SE196386.097	LB181340	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP50	SE196386.098	LB181340	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP50	SE196386.099	LB181343	05 Aug 2019	12 Aug 2019	12 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP51	SE196386.100	LB181343	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP51	SE196386.101	LB181343	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP52	SE196386.102	LB181343	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP52	SE196386.103	LB181343	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP53	SE196386.104	LB181343	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP53	SE196386.105	LB181343	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP54	SE196386.106	LB181343	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP54	SE196386.107	LB181343	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP55	SE196386.108	LB181343	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP55	SE196386.109	LB181343	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP56	SE196386.110	LB181343	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP56	SE196386.111	LB181344	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP57	SE196386.112	LB181344	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP57	SE196386.113	LB181344	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP58	SE196386.114	LB181344	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP59	SE196386.115	LB181344	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP59	SE196386.116	LB181344	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
55	GE 100000.110	LD 10 1044	00 / lug 20 10	12 / lug 20 10	10 / lug 20 10	20 / lug 20 0	217 ay 2010	217 lug 2010

21/8/2019 Page 7 of 16

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

pH in soil (1:5) (continued) Method: ME-(AU)-[ENV]AN101

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP58	SE196386.117	LB181344	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	21 Aug 2019
TP60	SE196386.118	LB181312	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP60	SE196386.119	LB181312	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP61	SE196386.120	LB181312	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP61	SE196386.121	LB181312	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP62	SE196386.122	LB181312	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP62	SE196386.123	LB181312	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP63	SE196386.124	LB181312	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019
TP63	SE196386.125	LB181312	06 Aug 2019	12 Aug 2019	13 Aug 2019	20 Aug 2019†	21 Aug 2019	20 Aug 2019

21/8/2019 Page 8 of 16

SURROGATES

SE196386 R0

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.

21/8/2019 Page 9 of 16

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Conductivity and TDS by Calculation - Soil

Method: ME-(AU)-[ENV]AN106

Conductivity and TDS by Calculation -	Sui		Medi	od. ME-(AO)-[ENV]ANTOC
Sample Number	Parameter	Units	LOR	Result
LB181138.001	Conductivity of Extract (1:5 as received)	μS/cm	1	<1
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	0
LB181280.001	Conductivity of Extract (1:5 as received)	μS/cm	1	<1
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	0
LB181305.001	Conductivity of Extract (1:5 as received)	μS/cm	1	<1
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	0
LB181307.001	Conductivity of Extract (1:5 as received)	μS/cm	1	<1
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	0
LB181311.001	Conductivity of Extract (1:5 as received)	μS/cm	1	<1
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	0
LB181312.001	Conductivity of Extract (1:5 as received)	μS/cm	1	<1
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	0.48
LB181340.001	Conductivity of Extract (1:5 as received)	μS/cm	1	<1
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	0
LB181343.001	Conductivity of Extract (1:5 as received)	μS/cm	1	<1
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	0
LB181344.001	Conductivity of Extract (1:5 as received)	μS/cm	1	<1
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	0

21/8/2019 Page 10 of 16

DUPLICATES

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Conductivity and TDS by Calculation - Soil

Method: ME-(AU)-[ENV]AN106

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE196385.002	LB181312.014	Conductivity of Extract (1:5 as received)	μS/cm	1	210	190	31	8
		Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	240	21.851952461	31	8
SE196385.012	LB181312.025	Conductivity of Extract (1:5 as received)	μS/cm	1	370	320	31	15
		Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	410	53.374689564	31	15
SE196386.017	LB181138.025	Conductivity of Extract (1:5 as received)	μS/cm	1	410	350	31	15
		Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	520	45.995886761	30	15
SE196386.021	LB181280.026	Conductivity of Extract (1:5 as received)	μS/cm	1	310	313.04	31	1
		Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	350	56.217931034	31	1
SE196386.032	LB181280.027	Conductivity of Extract (1:5 as received)	μS/cm	1	360	404.92	31	12
		Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	480	35.151027027	30	12
SE196386.048	LB181305.023	Conductivity of Extract (1:5 as received)	μS/cm	1	480	454	30	5
		Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	620	82.946745562	30	5
SE196386.057	LB181305.024	Conductivity of Extract (1:5 as received)	μS/cm	1	290	293.67	31	2
		Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	350	56.973257698	31	2
SE196386.067	LB181307.024	Conductivity of Extract (1:5 as received)	μS/cm	1	710	636.54	30	11
		Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	860	70.548421052	30	11
SE196386.077	LB181307.023	Conductivity of Extract (1:5 as received)	μS/cm	1	180	170	31	4
		Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	200	92.366666666	31	4
SE196386.087	LB181340.023	Conductivity of Extract (1:5 as received)	μS/cm	1	410	411.63	30	1
		Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	440	38.726092436	30	1
SE196386.097	LB181340.024	Conductivity of Extract (1:5 as received)	μS/cm	1	590	547.91	30	8
		Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	700	50.562927400	30	8
SE196386.107	LB181343.018	Conductivity of Extract (1:5 as received)	μS/cm	1	720	656	30	9
		Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	880	09.685534591	30	9
SE196386.110	LB181343.017	Conductivity of Extract (1:5 as received)	μS/cm	1	230	340	31	40 ②
		Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	240	62.626970227	31	40 ②
SE196386.115	LB181344.014	Conductivity of Extract (1:5 as received)	μS/cm	1	550	580	30	7
		Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	650	96.401673640	30	7
SE196386.117	LB181344.017	Conductivity of Extract (1:5 as received)	μS/cm	1	760	830	30	8
		Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	960	046.657210401	30	8
SE196423.005	LB181138.026	Conductivity of Extract (1:5 as received)	μS/cm	1	210	214.08	31	4
		Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	11.54746488	719.642471910	31	4
SE196599.005	LB181311.014	Conductivity of Extract (1:5 as received)	μS/cm	1	1426.66	1479.05	30	4
		Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	1500	527.524961890	30	4

Moisture Content

Method: ME-(AU)-[ENV]AN002

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE196385.002	LB181041.011	% Moisture	%w/w	0.5	13	12	38	5
SE196385.012	LB181041.022	% Moisture	%w/w	0.5	9.0	8.5	41	6
SE196385.013	LB181041.024	% Moisture	%w/w	0.5	12	15	37	17
SE196386.003	LB181033.011	% Moisture	%w/w	0.5	10	12	39	16
SE196386.017	LB181033.022	% Moisture	%w/w	0.5	21	22	35	1
SE196386.027	LB181034.011	% Moisture	%w/w	0.5	20	20	35	2
SE196386.037	LB181034.022	% Moisture	%w/w	0.5	12	10	39	11
SE196386.047	LB181035.011	% Moisture	%w/w	0.5	14	13	38	7
SE196386.057	LB181035.022	% Moisture	%w/w	0.5	18	20	35	12
SE196386.067	LB181036.011	% Moisture	%w/w	0.5	17	17	36	2
SE196386.077	LB181036.022	% Moisture	%w/w	0.5	10	8.6	41	15
SE196386.087	LB181037.011	% Moisture	%w/w	0.5	6.2	7.2	45	16
SE196386.097	LB181037.022	% Moisture	%w/w	0.5	16	16	36	4
SE196386.107	LB181038.011	% Moisture	%w/w	0.5	19	19	35	2
SE196386.117	LB181038.022	% Moisture	%w/w	0.5	21	22	35	3

pH in soil (1:5)

Method: ME-(AU)-[ENV]AN101

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE196385.002	LB181312.014	рН	pH Units	0.1	5.4	5.3	32	3
SE196385.012	LB181312.025	рН	pH Units	0.1	5.4	5.3	32	1
SE196386.017	LB181138.025	рН	pH Units	0.1	6.3	6.0	32	4
SE196386.021	LB181280.026	рН	pH Units	0.1	5.5	5.494	32	1
SE196386.032	LB181280.027	рН	pH Units	0.1	5.2	6.179	32	17
SE196386.048	LB181305.023	рН	pH Units	0.1	5.2	5.532	32	6
SE196386.057	LB181305.024	рН	pH Units	0.1	5.1	5.137	32	1

21/8/2019 Page 11 of 16

DUPLICATES

SE196386 R0

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

pH in soil (1:5) (continued)

Method: ME-(AU)-[ENV]AN101

	*							
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE196386.067	LB181307.024	рН	pH Units	0.1	4.7	4.869	32	5
SE196386.077	LB181307.023	pH	pH Units	0.1	5.6	5.6	32	11
SE196386.087	LB181340.023	pH	pH Units	0.1	7.6	7.832	31	2
SE196386.097	LB181340.024	рН	pH Units	0.1	5.2	5.374	32	4
SE196386.107	LB181343.018	рН	pH Units	0.1	5.4	4.426	32	19
SE196386.110	LB181343.017	рН	pH Units	0.1	5.9	5.8	32	2
SE196386.115	LB181344.014	рН	pH Units	0.1	5.2	5.0	32	4
SE196386.117	LB181344.017	рН	pH Units	0.1	5.0	5.0	32	1
SE196599.005	LB181311.014	рН	pH Units	0.1	6.6	6.7	32	0

21/8/2019 Page 12 of 16

LABORATORY CONTROL SAMPLES

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Conductivity and TDS by Calculation - Soil

Method: ME-(AU)-[ENV]AN106

							-, [
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB181138.002	Conductivity of Extract (1:5 as received)	μS/cm	1	300	303	85 - 115	100
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	NA	303	85 - 115	100
LB181280.002	Conductivity of Extract (1:5 as received)	μS/cm	1	300	303	85 - 115	99
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	NA	303	85 - 115	99
LB181305.002	Conductivity of Extract (1:5 as received)	μS/cm	1	290	303	85 - 115	95
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	NA	303	85 - 115	95
LB181307.002	Conductivity of Extract (1:5 as received)	μS/cm	1	280	303	85 - 115	94
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	NA	303	85 - 115	94
LB181311.002	Conductivity of Extract (1:5 as received)	μS/cm	1	290	303	85 - 115	97
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	NA	303	85 - 115	97
LB181312.002	Conductivity of Extract (1:5 as received)	μS/cm	1	290	303	85 - 115	96
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	NA	303	85 - 115	96
LB181340.002	Conductivity of Extract (1:5 as received)	μS/cm	1	280	303	85 - 115	93
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	NA	303	85 - 115	93
LB181343.002	Conductivity of Extract (1:5 as received)	μS/cm	1	290	303	85 - 115	94
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	NA	303	85 - 115	94
LB181344.002	Conductivity of Extract (1:5 as received)	μS/cm	1	280	303	85 - 115	94
	Conductivity of Extract (1:5 dry sample basis)	μS/cm	1	NA	303	85 - 115	94

pH in soil (1:5)

Method: ME-(AU)-[ENV]AN101

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB181138.003	рН	pH Units	0.1	7.4	7.415	98 - 102	100
LB181280.003	рН	pH Units	0.1	7.4	7.415	98 - 102	100
LB181305.003	рН	pH Units	0.1	7.4	7.415	98 - 102	100
LB181307.003	рН	pH Units	0.1	7.4	7.415	98 - 102	100
LB181311.003	рН	pH Units	0.1	7.4	7.415	98 - 102	100
LB181312.003	рН	pH Units	0.1	7.4	7.415	98 - 102	100
LB181340.003	рН	pH Units	0.1	7.4	7.415	98 - 102	100
LB181343.003	рН	pH Units	0.1	7.4	7.415	98 - 102	100
LB181344.003	рН	pH Units	0.1	7.4	7.415	98 - 102	99

21/8/2019 Page 13 of 16

MATRIX SPIKES

SE196386 R0

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spikes were required for this job.

21/8/2019 Page 14 of 16

MATRIX SPIKE DUPLICATES

SE196386 R0

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

21/8/2019 Page 15 of 16

FOOTNOTES

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
 QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- 2 RPD failed acceptance criteria due to sample heterogeneity.
- 3 Results less than 5 times LOR preclude acceptance criteria for RPD.
- Recovery failed acceptance criteria due to matrix interference.
- ® Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- © LOR was raised due to sample matrix interference.
- ① LOR was raised due to dilution of significantly high concentration of analyte in sample.
- ® Reanalysis of sample in duplicate confirmed sample heterogeneity and inconsistency of results.
- Recovery failed acceptance criteria due to sample heterogeneity.
- © LOR was raised due to high conductivity of the sample (required dilution).
- † Refer to Analytical Report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

21/8/2019 Page 16 of 16

Lemko Place

GEOTECHNIQUE PTY LTD

Laboratory Test Request / Chain of Custody Record

Tel: (02) 4722 2700

PENRITH NSW 2750 PENRITH NSW 2751

P O Box 880

Fax: (02) 4722 6161

SGS ENVIRONMENTAL SERVICES

email: info@geotech.com.au Sampling Date:

02/08/2019-09/08/2019

Page 8599/28 Job No:

of

UNIT 16

33 MADDOX STREET

ALEXANDRIA NSW

Sampled By:

RR & NK

Project:

Lot Classification

PH:

8594 0400

FAX: 8594 0499

Project Manager:

RR

Location:

Elara Boulevard, Marsden Park

ATTN:

Ms Emily Yin

Sampling			le type							
Location	Depth	Soil	Water				Results re	equired by:	1	
	(m)									
				EC (1:5)	рН	Sulphate	Chloride	ESP		(EEP
TP1	0.2-0.3	DSP		✓	V					YES
2	0.7-0.8	DSP		✓	V					YES
3 TP2	0.2-0.3	DSP		✓	~					YES
• 4	0.7-0.8	DSP		✓	V					YES
5 TP3	0.2-0.3	DSP		✓	√	1 1100		horston		YES
• 6	0.7-0.8	DSP		✓	✓		egs EHS Ale	exandria Laboratory		YES
7 TP4	0.2-0.3	DSP		✓	✓					YES
8	0.7-0.8	DSP		✓	✓		-		The second secon	YES
9 TP5	0.2-0.3	DSP		✓	√		- -			YES
• 10	0.7-0.8	DSP		✓	✓		05406	386 COC		YES
TP6	0.2-0.3	DSP		✓	✓		- 2F IAO	386 COC 12 - Aug - 2019		YES
	0.7-0.8	DSP		✓	✓		Received:	12-1149		YES
TP7	0.2-0.3	DSP		V	√		_	. —		YES
~	0.7-0.8	DSP		✓	√					YES
TP8	0.2-0.3	DSP		✓	√					YES
	0.7-0.8	DSP		✓	√					YES
TP9	0.2-0.3	DSP		✓	√					YES
	0.7-0.8	DSP		✓	√					YES
TP10	0.2-0.3	DSP		_	√					YES
	0.7-0.8	DSP		✓						YES
TP11	0.2-0.3	DSP		- V	✓					YES
	0.7-0.8	DSP	7 7		V					YES
TP12	0.2-0.3	DSP.	-	✓	V					YES
+	0.7-0.8	DSP		~	V		5525			YES
TP13 Form No 4.7F3-10 S	0.2-0.3	DSP	1.	✓	✓					/ES

26	0.7-0.8	DSP	✓	/			YES
TP14	0.2-0.3	DSP	✓	/			YES
	0.7-0.8	DSP	✓	✓			YES
TP15	0.2-0.3	DSP	✓	✓			YES
	0.7-0.8	DSP	-	1			YES
TP16	0.2-0.3	DSP	✓	✓			YES
	0.7-0.8	DSP	✓	✓			YES
TP17	0.2-0.3	DSP	✓	✓			YES
	0.7-0.8	DSP	√	✓			YES
TP18	0.2-0.3	DSP	√	✓			YES
	0.7-0.8	DSP	√	✓			YES
TP19	0.2-0.3	DSP	✓	✓			YES
	0.7-0.8	DSP	✓	✓			YES
TP20	0.2-0.3	DSP	✓	✓			YES
	0.7-0.8	DSP	✓	✓			YES
TP21	0.2-0.3	DSP	✓	✓			YES
	0.7-0.8	DSP	✓	✓			YES
TP22	0.2-0.3	DSP	✓	✓			YES
	0.7-0.8	DSP	✓	✓			YES
TP23	0.2-0.3	DSP	✓	✓			YES
	0.7-0.8	DSP	✓	✓			YES
TP24	0.2-0.3	DSP	✓	✓			YES
	0.7-0.8	DSP	✓	✓			YES
TP25	0.2-0.3	DSP	✓	V			YES
	0.7-0.8	DSP	✓	✓			YES
TP26	0.2-0.3	DSP	✓	✓			YES
	0.7-0.8	DSP	✓	√			YES
TP27	0.2-0.3	DSP	✓	V			YES
	0.7-0.8	DSP	✓	✓			YES
TP28	0.2-0.3	DSP	/	✓			YES
	0.7-0.8	DSP	✓	/			YES
TP29	0.2-0.3	DSP	✓	✓			YES
	0.7-0.8	DSP	√	✓			YES
TP30	0.2-0.3	DSP	√	✓			YES
	0.7-0.8	DSP	✓	V		 	YES
TP31	0.2-0.3	DSP	/	V			YES
TDOO	0.7-0.8	DSP	✓ ✓	*			YES
TP32	0.2-0.3	DSP	V V	V			YES
TP33	0.7-0.8	DSP		V			YES
1733	0.2-0.3	DSP	\ \ \ \ \				YES
TP34	0.7-0.8 0.2-0.3	DSP	\ \ \ \ \ \ \				YES YES
1534	0.2-0.3	DSP	- V	<u> </u>			YES
TP35	0.7-0.8	DSP	-				YES
70 Form No 4 7F3	0.5.0.0	DSP	V	· ·			YES

TP36 '7	0.2-0.3	DSP	_		T		1	1 1	1	YES
72	0.5-0.6	DSP	→	/			-	1	_	YES
TP37 73	0.2-0.3	DSP	→	/				+		YES
74	0.5-0.6	DSP	✓	/						YES
TP38 75	0.2-0.3	DSP	√	1						YES
76	0.5-0.6	DSP	✓	/				1		YES
TP39 77	0.2-0.3	DSP	✓	/						YES
78	0.5-0.6	DSP	✓							YES
TP40 79	0.2-0.3	DSP	→					+ -		YES
80	0.5-0.6	DSP	→	/						YES
TP41 81	0.2-0.3	DSP	✓	/						YES
82	0.5-0.6	DSP	✓	/						YES
TP42 83	0.2-0.3	DSP	→	/			<u> </u>	+		YES
84	0.5-0.6	DSP	→	/				1		YES
TP43 85	0.2-0.3	DSP	✓	/						YES
86	0.5-0.6	DSP	✓	/						YES
TP44 87	0.2-0.3	DSP		/						YES
88	0.5-0.6	DSP	✓	/						YES
TP45 89	0.2-0.3	DSP	✓	/						YES
90	0.5-0.6	DSP	✓	/						YES
TP46 91	0.2-0.3	DSP	✓	/						YES
92	0.5-0.6	DSP	✓	✓						YES
TP47 93	0.2-0.3	DSP	✓	/						YES
94	0.5-0.6	DSP	✓	✓						YES
TP48 95	0.2-0.3	DSP	✓	✓						YES
96	0.5-0.6	DSP	✓	✓						YES
TP49 987	0.2-0.3	DSP	✓	✓						YES
•	0.5-0.6	DSP	✓	✓						YES
TP50 98	0.2-0.3	DSP	V	✓						YES
99	0.5-0.6	DSP	V	✓						YES
TP51 100	0.2-0.3	DSP	✓	V		11.50				YES
101	0.5-0.6	DSP	✓	✓						YES
TP52 loz	0.2-0.3	DSP	✓	✓						YES
103	0.5-0.6	DSP	√	✓						YES
TP53 104	0.2-0.3	DSP	✓	✓						YES
105	0.5-0.6	DSP	✓	✓						YES
TP54 106	0.2-0.3	DSP	✓	~						YES
107	0.5-0.6	DSP	✓	✓						YES
TP55 108	0.2-0.3	DSP	✓	V						YES
109	0.5-0.6	DSP	✓	V						YES
TP56 110	0.2-0.3	DSP	✓	√						YES
111	0.5-0.6	DSP	V	√						YES
TP57 112	0.2-0.3	DSP	✓	✓						YES
113	0.5-0.6	DSP	√	✓						YES
TP58 1/4 Form No 4 7E3-10 S0	0.2-0.3	DSP	✓	✓						YES

WP	Water sample	e, plastic bottle	DSG Distu	rbed soil sample (gl	; ✓	Test required				# Geotech	nique Screen	
WG		e, glass bottle		sturbed soil sample		Disturbed soil sar	mple (small plast	ic bag)		* Purge &	Trap [@] mole	H⁺/tonne
	Raja		NK	9/08/2019	J.L			J.L		7	1/8/19 Zp	<u></u>
	Name		Signature	Date		Name			Signature		Date	
		Relinquish	ed by			Received by						
	125	0.5-0.6	DSP	✓	✓							YES
TP63	124	0.2-0.3	DSP	✓	✓							YES
	123	0.5-0.6	DSP	-	✓							YES
TP62	177	0.2-0.3	DSP	✓	✓							YES
	121	0.5-0.6	DSP	✓	✓							YES
TP61	120	0.2-0.3	DSP	✓	✓							YES
	119	0.5-0.6	DSP	✓	✓							YES
TP60	118	0.2-0.3	DSP	✓	V							YES
	117	0.5-0.6	DSP	V	✓							YES
TP59	116	0.2-0.3	DSP	✓	V							YES
	115	0.5-0.6	DSP	V	V							YES

CLIENT DETAILS

Address

LABORATORY DETAILS

Ram Ravi-Indran Contact Geotechnique Client

> P.O. Box 880 NSW 2751

Address

Manager

Laboratory

Huong Crawford SGS Alexandria Environmental

Unit 16, 33 Maddox St

Alexandria NSW 2015

02 4722 2700 +61 2 8594 0400 Telephone Telephone 02 4722 6161 +61 2 8594 0499 Facsimile Facsimile

ram@geotech.com.au Email

Email

au.environmental.sydney@sgs.com

Yes

8599-28 Elara Boulevard, Marsden Park Project

Order Number (Not specified) 125 Samples

Samples Received Report Due

Mon 12/8/2019 Wed 21/8/2019

SF196386 SGS Reference

SUBMISSION DETAILS

This is to confirm that 125 samples were received on Monday 12/8/2019. Results are expected to be ready by COB Wednesday 21/8/2019. Please quote SGS reference SE196386 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested

Yes Client Yes

9/8/2019@3:48pm

Yes 16.8°C Standard

Complete documentation received Sample cooling method

None Sample counts by matrix 120 Soil Type of documentation received COC Samples received without headspace NA Sufficient sample for analysis Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

Samples with "red dots" not received.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

CLIENT DETAILS

Client Geotechnique

Project 8599-28 Elara Boulevard, Marsden Park

- SUMMARY OF ANALYSIS

No.	Sample ID	Conductivity and TDS by Calculation - Soil	Moisture Content	pH in soil (1:5)
001	TP1 0.2-0.3	2	1	1
002	TP1 0.7-0.8	2	1	1
003	TP2 0.2-0.3	2	1	1
007	TP4 0.2-0.3	2	1	1
008	TP4 0.7-0.8	2	1	1
009	TP5 0.2-0.3	2	1	1
011	TP6 0.2-0.3	2	1	1
012	TP6 0.7-0.8	2	1	1
013	TP7 0.2-0.3	2	1	1
014	TP7 0.7-0.8	2	1	1
015	TP8 0.2-0.3	2	1	1
016	TP8 0.7-0.8	2	1	1
017	TP9 0.2-0.3	2	1	1
018	TP9 0.7-0.8	2	1	1
019	TP10 0.2-0.3	2	1	1
020	TP10 0.7-0.8	2	1	1
021	TP11 0.2-0.3	2	1	1
022	TP11 0.7-0.8	2	1	1
023	TP12 0.2-0.3	2	1	1
024	TP12 0.7-0.8	2	1	1

_ CONTINUED OVERLEAF

Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS -

Client Geotechnique

Project 8599-28 Elara Boulevard, Marsden Park

- SUMMARY OF ANALYSIS

N-	Canada ID	Conductivity and TDS by Calculation - Soil	Moisture Content	pH in soil (1:5)
No.	Sample ID TP13 0.2-0.3	2	1	1
026	TP13 0.7-0.8	2	1	1
027	TP14 0.2-0.3	2	1	1
028	TP14 0.7-0.8	2	1	1
029	TP15 0.2-0.3	2	1	1
030	TP15 0.7-0.8	2	1	1
031	TP16 0.2-0.3	2	1	1
032	TP16 0.7-0.8	2	1	1
033	TP17 0.2-0.3	2	1	1
034	TP17 0.7-0.8	2	1	1
035	TP18 0.2-0.3	2	1	1
036	TP18 0.7-0.8	2	1	1
037	TP19 0.2-0.3	2	1	1
038	TP19 0.7-0.8	2	1	1
039	TP20 0.2-0.3	2	1	1
040	TP20 0.7-0.8	2	1	1
041	TP21 0.2-0.3	2	1	1
042	TP21 0.7-0.8	2	1	1
043	TP22 0.2-0.3	2	1	1
044	TP22 0.7-0.8	2	1	1
045	TP23 0.2-0.3	2	1	1
046	TP23 0.7-0.8	2	1	1
047	TP24 0.2-0.3	2	1	1
048	TP24 0.7-0.8	2	1	1

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

14/08/2019 Page 3 of 7

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS -Project 8599-28 Elara Boulevard, Marsden Park Client Geotechnique

- SUMMARY OF ANALYSIS

			I	
No.	Sample ID	Conductivity and TDS by Calculation - Soil	Moisture Content	pH in soil (1:5)
049	TP25 0.2-0.3	2	1	1
050	TP25 0.7-0.8	2	1	1
051	TP26 0.2-0.3	2	1	1
052	TP26 0.7-0.8	2	1	1
053	TP27 0.2-0.3	2	1	1
054	TP27 0.7-0.8	2	1	1
055	TP28 0.2-0.3	2	1	1
056	TP28 0.7-0.8	2	1	1
057	TP29 0.2-0.3	2	1	1
058	TP29 0.7-0.8	2	1	1
059	TP30 0.2-0.3	2	1	1
060	TP30 0.7-0.8	2	1	1
061	TP31 0.2-0.3	2	1	1
062	TP31 0.7-0.8	2	1	1
063	TP32 0.2-0.3	2	1	1
064	TP32 0.7-0.8	2	1	1
065	TP33 0.2-0.3	2	1	1
066	TP33 0.7-0.8	2	1	1
067	TP34 0.2-0.3	2	1	1
068	TP34 0.7-0.8	2	1	1
069	TP35 0.2-0.3	2	1	1
070	TP35 0.5-0.6	2	1	1
071	TP36 0.2-0.3	2	1	1
072	TP36 0.5-0.6	2	1	1

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

14/08/2019 Page 4 of 7

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS -Project 8599-28 Elara Boulevard, Marsden Park Client Geotechnique

- SUMMARY OF ANALYSIS

No.	Sample ID	Conductivity and TDS by Calculation - Soil	Moisture Content	pH in soil (1:5)
073	TP37 0.2-0.3	2	1	1
074	TP37 0.5-0.6	2	1	1
075	TP38 0.2-0.3	2	1	1
076	TP38 0.5-0.6	2	1	1
077	TP39 0.2-0.3	2	1	1
078	TP39 0.5-0.6	2	1	1
079	TP40 0.2-0.3	2	1	1
080	TP40 0.5-0.6	2	1	1
081	TP41 0.2-0.3	2	1	1
082	TP41 0.5-0.6	2	1	1
083	TP42 0.2-0.3	2	1	1
084	TP42 0.5-0.6	2	1	1
085	TP43 0.2-0.3	2	1	1
086	TP43 0.5-0.6	2	1	1
087	TP44 0.2-0.3	2	1	1
088	TP44 0.5-0.6	2	1	1
089	TP45 0.2-0.3	2	1	1
090	TP45 0.5-0.6	2	1	1
091	TP46 0.2-0.3	2	1	1
092	TP46 0.5-0.6	2	1	1
093	TP47 0.2-0.3	2	1	1
094	TP47 0.5-0.6	2	1	1
095	TP48 0.2-0.3	2	1	1
096	TP48 0.5-0.6	2	1	1

_ CONTINUED OVERLEAF

14/08/2019 Page 5 of 7

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS -Project 8599-28 Elara Boulevard, Marsden Park Client Geotechnique

- SUMMARY OF ANALYSIS

No.	Sample ID	Conductivity and TDS by Calculation - Soil	Moisture Content	pH in soil (1:5)
097	TP49 0.2-0.3	2	1	1
098	TP50 0.2-0.3	2	1	1
099	TP50 0.5-0.6	2	1	1
100	TP51 0.2-0.3	2	1	1
101	TP51 0.5-0.6	2	1	1
102	TP52 0.2-0.3	2	1	1
103	TP52 0.5-0.6	2	1	1
104	TP53 0.2-0.3	2	1	1
105	TP53 0.5-0.6	2	1	1
106	TP54 0.2-0.3	2	1	1
107	TP54 0.5-0.6	2	1	1
108	TP55 0.2-0.3	2	1	1
109	TP55 0.5-0.6	2	1	1
110	TP56 0.2-0.3	2	1	1
111	TP56 0.5-0.6	2	1	1
112	TP57 0.2-0.3	2	1	1
113	TP57 0.5-0.6	2	1	1
114	TP58 0.2-0.3	2	1	1
115	TP59 0.5-0.6	2	1	1
116	TP59 0.2-0.3	2	1	1
117	TP58 0.5-0.6	2	1	1
118	TP60 0.2-0.3	2	1	1
119	TP60 0.5-0.6	2	1	1
120	TP61 0.2-0.3	2	1	1

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

14/08/2019 Page 6 of 7

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS _ Project 8599-28 Elara Boulevard, Marsden Park Client Geotechnique

			LYSIS	

No.	Sample ID	Conductivity and TDS by Calculation - Soil	Moisture Content	pH in soil (1:5)
121	TP61 0.5-0.6	2	1	1
122	TP62 0.2-0.3	2	1	1
123	TP62 0.5-0.6	2	1	1
124	TP63 0.2-0.3	2	1	1
125	TP63 0.5-0.6	2	1	1

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

14/08/2019 Page 7 of 7